為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法調(diào)查該地區(qū)老人情況:男老年人需要提供幫助40人,不需要提供幫助160人;女老年人需要提供幫助30人,不需要提供幫助270人
(1)根據(jù)調(diào)查數(shù)據(jù)制作2×2列聯(lián)表;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查辦法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
參考數(shù)據(jù) 當(dāng)Χ2≤2.706時(shí),無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)Χ2>2.706時(shí),有90%把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>3.841時(shí),有95%把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>6.635時(shí),有99%把握判定變量A,B有關(guān)聯(lián).
分析:(1)根據(jù)男老年人需要提供幫助40人,不需要提供幫助160人;女老年人需要提供幫助30人,不需要提供幫助270人,可得2×2列聯(lián)表;
(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機(jī)變量的觀測(cè)值公式,得到觀測(cè)值的結(jié)果,把觀測(cè)值的結(jié)果與臨界值進(jìn)行比較,即可求得;
(3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,故可得結(jié)論
解答:解:(1)制表(5分)
合計(jì)
需  要 40 30 70
不需要 160 270 430
合計(jì) 200 300 500
(2)Χ2=
500×(40×270-30×160)2
200×300×70×430
≈9.967>6.635

所以有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān).…(10分)
(3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時(shí),先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡(jiǎn)單隨機(jī)抽樣方法更好.…(15分)
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查數(shù)據(jù)處理能力、運(yùn)算求解能力和應(yīng)用意識(shí),本題解題的關(guān)鍵是正確運(yùn)算出觀測(cè)值,理解臨界值對(duì)應(yīng)的概率的意義,要想知道兩個(gè)變量之間的有關(guān)或無關(guān)的精確的可信程度,只有利用獨(dú)立性檢驗(yàn)的有關(guān)計(jì)算,才能做出判斷,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如表:
性    別

是否需要志愿者
需要 40 30
不需要 160 270
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
算得,K2=
500×(40×270-30×160)2
200×300×70×430
≈9.967

附表:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
參照附表,得到的正確結(jié)論是(  )
A、在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“需要志愿者提供幫助與性別有關(guān)”
B、在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“需要志愿者提供幫助與性別無關(guān)”
C、有99%以上的把握認(rèn)為“需要志愿者提供幫助與性別有關(guān)”
D、有99%以上的把握認(rèn)為“需要志愿者提供幫助與性別無關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案