17.在平行四邊形ABCD中,E為BC的中點(diǎn),F(xiàn)為DC的中點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,則λ+μ的值為$\frac{8}{5}$.

分析 可畫出圖形,根據(jù)向量加法和數(shù)乘的幾何意義、相等向量的概念便可得到$\overrightarrow{AE}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD},\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$,進(jìn)行向量的數(shù)乘運(yùn)算便可由$\overrightarrow{AC}=λ\overrightarrow{AE}+μ\overrightarrow{BF}$得出$\overrightarrow{AC}=(λ-\frac{1}{2}μ)\overrightarrow{AB}+(\frac{1}{2}λ+μ)\overrightarrow{AD}$,而$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,從而由平面向量基本定理即可建立關(guān)于λ,μ的方程組,解出λ,μ便可得出λ+μ的值.

解答 解:如圖,$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$,$\overrightarrow{BF}=\overrightarrow{BC}+\overrightarrow{CF}$=$-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$;
∴$\overrightarrow{AC}=λ(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})+μ(-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD})$=$(λ-\frac{1}{2}μ)\overrightarrow{AB}+(\frac{1}{2}λ+μ)\overrightarrow{AD}$;
又$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$;
∴$\left\{\begin{array}{l}{λ-\frac{1}{2}μ=1}\\{\frac{1}{2}λ+μ=1}\end{array}\right.$;
解得$λ=\frac{6}{5},μ=\frac{2}{5}$;
∴$λ+μ=\frac{8}{5}$.
故答案為:$\frac{8}{5}$.

點(diǎn)評(píng) 考查向量加法、向量數(shù)乘的幾何意義,以及相等向量的概念,向量的數(shù)乘運(yùn)算,向量加法的平行四邊形法則,平面向量基本定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合A={x∈R|x2-2x-3<0},B={x∈R|-1<x<m},若x∈A是x∈B的充分不必要條件,則實(shí)數(shù)m的取值范圍為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}中,a1=1,a2=3,其前n項(xiàng)和為Sn,且當(dāng)n≥2時(shí),an+1Sn-1-anSn=0.
(1)求證:數(shù)列{Sn}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{9{a_n}}}{{({{a_n}+3})({{a_{n+1}}+3})}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.證明:
(1)AP∥平面BED;
(2)平面APC⊥平面BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)a∈R,復(fù)數(shù)$\frac{a+2i}{1+2i}$(i是虛數(shù)單位)是純虛數(shù),則a的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知遞增等差數(shù)列{an},滿足a22+16=a62,3a3+a5=0,Sn是前n項(xiàng)和,則S9=( 。
A.16B.20C.27D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b∈R,則a>b得一個(gè)必要非充分條件是(  )
A.a>b-1B.a>b+1C.a2>b2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.α,β,γ為不同平面,a,b為不同直線,命題p:若α⊥γ,β⊥γ,且α∩β=a,則a⊥γ;命題q:若a⊥α,b⊥α,則a∥b,下列命題正確的是( 。
A.¬pB.¬qC.(¬p)∧qD.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某棉紡廠為了了解一批棉花的質(zhì)量,從中隨機(jī)抽測(cè)了100根棉花纖維的長(zhǎng)度(棉花纖維所得數(shù)據(jù)均在區(qū)間[5,40]中,其頻率分布直方圖如圖所示,則在抽測(cè)的100根中10根棉花纖維的長(zhǎng)度小于15mm.

查看答案和解析>>

同步練習(xí)冊(cè)答案