【題目】命題“若x2+y2=0,則x=y(tǒng)=0”的否命題是( )
A. 若x2+y2=0,則x,y中至少有一個(gè)不為0
B. 若x2+y2≠0,則x,y中至少有一個(gè)不為0
C. 若x2+y2≠0,則x,y都不為0
D. 若x2+y2=0,則x,y都不為0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(ax﹣bx),(a,b為常數(shù),a>1>b>0),若x∈(2,+∞)時(shí),f(x)>0恒成立,則( )
A.a2﹣b2>1
B.a2﹣b2≥1
C.a2﹣b2<1
D.a2﹣b2≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由①正方形的四個(gè)內(nèi)角相等;②矩形的四個(gè)內(nèi)角相等;③正方形是矩形,根據(jù)“三段論”推理得出一個(gè)結(jié)論,則作為大前提、小前提、結(jié)論的分別為( )
A.②①③
B.③①②
C.①②③
D.②③①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為U={x|x≤4},A={x|x2+x﹣2<0},B={x|x(x﹣1)≥0}.
求:
(1)A∩B;
(2)A∪B;
(3)U(A∩B).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在R上可導(dǎo),且f(x)=x2+2xf′(2),則函數(shù)f(x)的解析式為( )
A.f(x)=x2+8x
B.f(x)=x2﹣8x
C.f(x)=x2+2x
D.f(x)=x2﹣2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的方法種數(shù):
(1)將4個(gè)不同的小球,放進(jìn)4個(gè)不同的盒子,且沒有空盒子,共有多少種放法?
(2)將4個(gè)不同的小球,放進(jìn)3個(gè)不同的盒子,且沒有空盒子,共有多少種放法?(最后結(jié)果用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“x∈R,x2+1>0”的否定是( )
A.x∈R,x2+1<0
B.x∈R,x2+1≤0
C.x∈R,x2+1≤0
D.x∈R,x2+1<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問150名大學(xué)生是否參加某社團(tuán)活動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
參加 | 55 | 25 | 80 |
不參加 | 30 | 40 | 70 |
總計(jì) | 85 | 65 | 150 |
附表:
P(K2≥k0) | 0.05 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確的結(jié)論是( )
A. 在犯錯(cuò)的概率不超過0.1%的前提下,認(rèn)為“是否參加該社團(tuán)活動(dòng)與性別無關(guān)”
B. 在犯錯(cuò)的概率不超過0.1%的前提下,認(rèn)為“是否參加該社團(tuán)活動(dòng)與性別有關(guān)”
C. 有99%以上的把握認(rèn)為“是否參加該社團(tuán)活動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“是否參加該社團(tuán)活動(dòng)與性別無關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com