在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2.該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ2345
P0.03P1P2P3P4
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。
【答案】分析:(1)由題設(shè)知,“ξ=0”對應(yīng)的事件為“在三次投籃中沒有一次投中”,由對立事件和相互獨立事件性質(zhì),能求出q2
(2)分別求出p1=p(ξ=2),p2=p(ξ=3),p3=p(ξ=4),p4=p(ξ=5),由此能求出Eξ.
(3)用C表示事件“該同學(xué)選擇第一次在A處投,以后都在B處投,得分超過3分”,用D表示事件“該同學(xué)選擇都在B處投,得分超過3分”,則P(C)=P(ξ=4)+P(ξ=5),P(D)=,由此能求出結(jié)果.
解答:解:(1)由題設(shè)知,“ξ=0”對應(yīng)的事件為“在三次投籃中沒有一次投中”,
由對立事件和相互獨立事件性質(zhì),
知p(ξ=0)=(1-q1)(1-q22=0.03,
∵q1=0.25,
∴解得q2=0.8.
(2)根據(jù)題意p1=p(ξ=2)=(1-q1)•(1-q2)q2=0.75×2×0.2×0.8=0.24,
p2=p(ξ=3)==0.25×(1-0.8)2=0.01,
p3=p(ξ=4)=(1-q1=0.75×0.82=0.48,
p4=p(ξ=5)=q1q2+q1(1-q2)q2=0.25×0.8+0.25×0.2×0.8=0.24,
因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.
(3)用C表示事件“該同學(xué)選擇第一次在A處投,以后都在B處投,得分超過3分”,
用D表示事件“該同學(xué)選擇都在B處投,得分超過3分”,
則P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72,
P(D)==0.82+2×0.8×0.2×0.8=0.896,
故P(D)>P(C).
即該同學(xué)選擇都在B處投籃得分超過3分的概率大于該同學(xué)選擇第一次在A處投以后都在B處投得分超過3分的概率.
點評:本題考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法和應(yīng)用,解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2.該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ 0 2 3 4 5
P 0.03 P1 P2 P3 P4
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)在某學(xué)校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投次:在處每投進一球得分,在處每投進一球得分;如果前兩次得分之和超過分即停止投籃,否則投第三次.某同學(xué)在處的命中率,在處的命中率為,該同學(xué)選擇先在處投一球,以后都在處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為

0

2

3

4

5

(1) 求的值;(2) 求隨機變量的數(shù)學(xué)期望;

(3) 試比較該同學(xué)選擇都在處投籃得分超過分與選擇上述方式投籃得分超過分的概率的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2.該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ 0 2 3 4 5
P 0.03 P1 P2 P3 P4
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《概率》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(北京師范大學(xué)附中)(解析版) 題型:解答題

在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2.該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ2345
P0.03P1P2P3P4
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。

查看答案和解析>>

同步練習(xí)冊答案