分析 由函數(shù)的圖象求出T,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結論.
解答 解:由函數(shù)的圖象可得$\frac{3}{4}$T=$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,可得:T=π=$\frac{2π}{ω}$,
∴ω=2.
再根據(jù)點($\frac{5π}{12}$,2)在函數(shù)圖象上,可得:2sin(2×$\frac{5π}{12}$+φ)=2,
∴2×$\frac{5π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ-$\frac{π}{3}$,k∈Z,
∴函數(shù)f(x)=2sin(2x-$\frac{π}{3}$).
把函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個單位,可得y=2sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=2sin2x的圖象,
故答案為:y=2sin2x.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36π | B. | 9π | C. | $\frac{9}{2}π$ | D. | $\frac{27}{5}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2,3,4} | B. | {0,1} | C. | {0,1,4} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{7π}{12},0)$ | B. | $(\frac{π}{6},0)$ | C. | $(\frac{5π}{8},0)$ | D. | $(\frac{2π}{3},-3)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com