設(shè)橢圓C:+=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為.

(1)C的方程;

(2)求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

 

【答案】

(1) +=1 (2) ,-

【解析】

:(1)(0,4)代入C的方程得=1,

b=4,

又由e==,=,

1-=,

a=5,

C的方程為+=1.

(2)過(guò)點(diǎn)(3,0)且斜率為的直線方程為y=(x-3).

設(shè)直線與C的交點(diǎn)為A(x1,y1),B(x2,y2),

將直線方程y=(x-3)代入C的方程,

+=1,

x2-3x-8=0,

x1+x2=3.

設(shè)線段AB的中點(diǎn)坐標(biāo)為(x,y),

x==,

y==(x1+x2-6)=-,

即中點(diǎn)坐標(biāo)為,-.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,PC上的點(diǎn),PF2F1F2,PF1F2=30°,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧省丹東市高二下學(xué)期期初摸底文科數(shù)學(xué)卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l與橢圓C交于AB兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:=1(a>b>0)過(guò)點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

同步練習(xí)冊(cè)答案