13.以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心,交橢圓于點M、N,若直線MF1(F1為橢圓左焦點)是圓F2的切線,則橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$-1D.2-$\sqrt{3}$

分析 根據(jù)題意思可得:點P是切點,因此PF2=c并且PF1⊥PF2,可得∠PF1F2=30°,可知|PF1|=$\sqrt{3}$c.根據(jù)橢圓的定義可得|PF1|+|PF2|=2a,可得|PF2|=2a-c.求得a,由離心率公式即可求得橢圓的離心率.

解答 解:設(shè)F2為橢圓的右焦點
由題意可得:圓與橢圓交于P,并且直線PF1(F1為橢圓的左焦點)是該圓的切線,
∴點P是切點,
∴PF2=c,PF1⊥PF2
又∵F1F2=2c,
∴∠PF1F2=30°,
∴|PF1|=$\sqrt{3}$c.
根據(jù)橢圓的定義可得:|PF1|+|PF2|=2a,
∴|PF2|=2a-c.
∴2a-c=$\sqrt{3}$c,即a=$\frac{\sqrt{3}+1}{2}$c,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}+1}$=$\sqrt{3}$-1,
故選C.

點評 本題考查橢圓的定義,考查直線與橢圓的位置關(guān)系,勾股定理及離心率公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從集合A={d,V,W}到集合B={0,1}的所有映射的個數(shù)為( 。
A.0B.2C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{4}$+$\frac{y^2}{36}$=1的短軸長為( 。
A.2B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等差數(shù){an}中,3(a2+a6)+2(a5+a10+a15)=24,則此數(shù)列前13項之和為( 。
A.26B.13C.52D.156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=ax2+x+1在[-2,3)上是增函數(shù),則a的范圍為[-$\frac{1}{6}$,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若偶函數(shù)y=f(x)對任意實數(shù)x都有f(x+2)=-f(x),且在〔-2,0〕上為單調(diào)遞減函數(shù),則(  )
A.$f(\frac{11}{2})>f(\frac{11}{3})>f(\frac{11}{4})$B.$f(\frac{11}{4})>f(\frac{11}{2})>f(\frac{11}{3})$C.$f(\frac{11}{2})>f(\frac{11}{4})>f(\frac{11}{3})$D.$f(\frac{11}{3})>f(\frac{11}{4})>f(\frac{11}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知y=logax(a>0,且a≠1)在x∈[2,4]上的最大值比最小值多1,則a=2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=Acos(πx+φ)(其中A>0,0<φ<π,x∈R).當(dāng)x=$\frac{1}{3}$時,f(x)取得最小值-2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線L過(2,-1)且與直線$\sqrt{3}x+y+10=0$的夾角為60°,則L的方程為y=-1,或y=$\sqrt{3}$x-2$\sqrt{3}$-1.

查看答案和解析>>

同步練習(xí)冊答案