分析:(1)注意到f(x)=x
2+2|x-a|+a=
;結(jié)合二次函數(shù)的單調(diào)性,分6種情況討論;
(2)[f(x)+b]
2≤36對(duì)x∈[-2,2]恒成立可化為-b-6≤f(x)≤-b+6對(duì)x∈[-2,2]恒成立,再化為最值問題,討論求解.
解答:
解:(1)f(x)=x
2+2|x-a|+a=
;
①當(dāng)a≥2時(shí),在x∈[-2,2]上,
f(x)=x
2+2|x-a|+a=x
2-2x+3a,
M(a)=f(-2)=4+4+3a=8+3a,
m(a)=f(1)=3a-1;
g(a)=M(a)-m(a)=9;
②當(dāng)1≤a<2時(shí),
f(x)在[1,2]上單調(diào)遞增,在[-2,1]上單調(diào)減,
且f(1)=3a-1,f(-2)=4+4+3a=8+3a,
f(2)=8-a;
故M(a)=f(-2)=4+4+3a=8+3a,
m(a)=f(1)=3a-1;
則g(a)=M(a)-m(a)=9;
③當(dāng)0≤a<1時(shí),
f(x)在[a,2]上單調(diào)遞增,在[-2,a]上單調(diào)減,
且f(a)=a
2+a,f(-2)=4+4+3a=8+3a,
f(2)=8-a;
故M(a)=f(-2)=4+4+3a=8+3a,
m(a)=f(a)=a
2+a;
則g(a)=M(a)-m(a)=-a
2+2a+8;
④當(dāng)-1<a<0時(shí),
f(x)在[a,2]上單調(diào)遞增,在[-2,a]上單調(diào)減,
且f(a)=a
2+a,f(-2)=4+4+3a=8+3a,
f(2)=8-a;
故M(a)=f(2)=8-a,
m(a)=f(a)=a
2+a;
則g(a)=M(a)-m(a)=-a
2-2a+8;
⑤當(dāng)-2<a≤-1時(shí),
f(x)在[-1,2]上單調(diào)遞增,在[-2,-1]上單調(diào)減,
且f(-1)=1-2-a=-1-a,f(-2)=4+4+3a=8+3a,
f(2)=8-a;
故M(a)=f(2)=8-a,
m(a)=f(-1)=1-2-a=-1-a;
則g(a)=M(a)-m(a)=9;
⑥當(dāng)a≤-2時(shí),在x∈[-2,2]上,
f(x)=x
2+2|x-a|+a=x
2+2x-a,
M(a)=f(2)=8-a,
m(a)=f(-1)=-a-1;
g(a)=M(a)-m(a)=9;
綜上所述,g(a)=
| 9,a≤-1或a≥1 | -a2-2a+8,-1<a<0 | -a2+2a+8,0≤a<1 |
| |
.
(2)[f(x)+b]
2≤36可化為-b-6≤f(x)≤-b+6,
故[f(x)+b]
2≤36對(duì)x∈[-2,2]恒成立可化為-b-6≤f(x)≤-b+6對(duì)x∈[-2,2]恒成立,
①a≥1時(shí),M(a)=f(-2)=4+4+3a=8+3a,m(a)=f(1)=3a-1;
故-b-6≤3a-1,且8+3a≤-b+6,
從而解得,a+b≤-2a-2≤-4,
②當(dāng)0≤a<1時(shí),M(a)=f(-2)=4+4+3a=8+3a,m(a)=f(a)=a
2+a;
故-b-6≤a
2+a,且8+3a≤-b+6,
則-7<a+b≤-2;
③當(dāng)-1<a<0時(shí),M(a)=f(2)=8-a,m(a)=f(a)=a
2+a;
故-b-6≤a
2+a,且8-a≤-b+6,
故-7<a+b<-2,
④當(dāng)a≤-1時(shí),M(a)=f(2)=8-a,m(a)=f(-1)=-a-1;
故-b-6≤-a-1,且8-a≤-b+6,
則b+a≤-4,
綜上所述,b+a≤-2.