在三棱錐A-BCD中,AD=BC=2a,E、F分別是AB、CD的中點(diǎn),EF=a,求AD與BC所成的角.

【答案】分析:取AC的中點(diǎn)M,連接ME、MF,則ME∥BC,MF∥AD,所以∠EMF(或其補(bǔ)角)是直線AD與BC所成的角.在△EMF中,根據(jù)中位線定理可知:ME=BC=a,MF=AD=a,EF=a,再由余弦定理可知:∠EMF=120°,進(jìn)而可得答案.
解答:解:取AC的中點(diǎn)M,連接ME、MF,則ME∥BC,MF∥AD,所以∠EMF(或其補(bǔ)角)是直線AD與BC所成的角.
∵在△EMF中,ME=BC=a,MF=AD=a,EF=a,
∴cos∠EMF==-,
∴∠EMF=120°,
因此異面直線AD與BC所成的角為60°.
點(diǎn)評(píng):本題主要考查了異面直線所成的角,空間中的線面關(guān)系,解三角形等基礎(chǔ)知識(shí),考查空間想象能力和思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且長(zhǎng)度均為1,E為BC中點(diǎn),則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,AB=4,CD=2,且異面直線AB、CD所成的角為60°,若M、N分別是AD、BC的中點(diǎn),則MN=
3
7
3
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•渭南三模)在三棱錐A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求證:DE⊥平面ABC;
(Ⅱ)求平面BAC與平面DAC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜
邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面ABC是正三角形.
(1)當(dāng)正視圖方向與向量
CD
的方向相同時(shí),畫出三棱錐A-BCD的三視圖;(要求標(biāo)出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在線段AC上是否存在一點(diǎn)E,使ED與平面BCD成30°角?若存在,確定點(diǎn)E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得MF⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案