【題目】某公司對(duì)應(yīng)聘人員進(jìn)行能力測(cè)試,測(cè)試成績(jī)總分為150分.下面是30位應(yīng)聘人員的測(cè)試成績(jī)的測(cè)試成績(jī):64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求應(yīng)聘人員的測(cè)試成績(jī)的樣本平均數(shù) (保留小數(shù)點(diǎn)后兩位);
(2)根據(jù)以上數(shù)據(jù)完成下面莖葉圖:

應(yīng)聘人員的測(cè)試成績(jī)

6

7

8

9

10

11

12

13


(3)由莖葉圖可以認(rèn)為,應(yīng)聘人員的測(cè)試成績(jī)Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 , 其中s2=18.872 , 利用該正態(tài)分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,
P(μ﹣2σ<Z<μ+2σ)=0.9544.

【答案】
(1)解:應(yīng)聘人員的測(cè)試成績(jī)的樣本平均數(shù)

(2)莖葉圖如下:

應(yīng)聘人員的測(cè)試成績(jī)

6

4 7

7

0 2 2 4 6

8

2 2 3 6 8

9

3 3 5 5 5

10

2 4 6 6 8

11

6 8 9 9

12

2 3

13

1


(3)∵76.40=95.27﹣18.87=μ﹣σ,114.14=95.27+18.87=μ+σ,

∴P(76.40<Z<114.14)=P(μ﹣σ<Z<μ+σ)=0.6826.


【解析】1、由樣本平均數(shù) 的定義可得。
2、由莖葉圖的概念結(jié)合(1)可得。
3、由題意可知,應(yīng)聘人員的測(cè)試成績(jī)Z服從正態(tài)分布,利用題中的已知條件可得。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣ <φ<0)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0 , 2)和(x0+2π,﹣2).

(1)求函數(shù)f(x)的解析式;
(2)若銳角θ滿足f(2θ+ )= ,求f(2θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中有紅、黃、藍(lán)三種顏色的小球各一個(gè),每次從中取出一個(gè),記下顏色后放回,當(dāng)三種顏色的球全部取出時(shí)停止取球,則恰好取5次球時(shí)停止取球的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)M(﹣1,0)和N(1,0),若某直線上存在點(diǎn)P,使得|PM|+|PN|=4,則稱該直線為“橢型直線”.現(xiàn)有下列直線:①x﹣2y+6=0;②x﹣y=0;③2x﹣y+1=0;④x+y﹣3=0.其中是“橢型直線”的是( 。
A.①③
B.①②
C.②③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無(wú)零點(diǎn),求a最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入( 。

A.k≤33
B.k≤38
C.k≤50
D.k≤65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(  )
A.若a∈R,則“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.若命題p:“x∈R,sinx+cosx≤ ”,則¬p是真命題
D.命題“x0∈R,使得x02+2x0+3<0”的否定是“x∈R,x2+2x+3>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=2ln(x﹣2)﹣a(x﹣2)2
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)相異零點(diǎn)x1 , x2 , 求證x1x2+4>2(x1+x2)+e(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= . (a>0且a≠1),函數(shù)g(x)=f(x)﹣k.
①若a= ,函數(shù)g(x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍為;
②若f(x)有最小值,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案