【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.

【答案】
(1)證明:連接OE,

在△CAP中,CO=OA,CE=EP,

∴PA∥EO,

又∵PA平面BDE,EO平面BDE,

∴PA∥平面BDE.


(2)證明:∵PO⊥底面ABCD,BD平面ABCD,

∴BD⊥PO

又∵四邊形ABCD是正方形,

∴BD⊥AC

∵AC∩PO=O,AC,PO平面PAC

∴BD⊥平面PAC


【解析】(1)連接OE,根據(jù)三角形中位線定理,可得PA∥EO,進(jìn)而根據(jù)線面平行的判定定理,得到PA∥平面BDE.(2)根據(jù)線面垂直的定義,可由PO⊥底面ABCD得到BD⊥PO,結(jié)合四邊形ABCD是正方形及線面垂直的判定定理可得BD⊥平面PAC
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, , ,且△ABC的周長為
(1)求點(diǎn)A的軌跡方程C;
(2)過點(diǎn)P(2,1)作曲線C的一條弦,使弦被這點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間 上的圖象,為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)(
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
B.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
D.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若在定義域內(nèi)存在實(shí)數(shù)x0使得f(x0+1)=f(x0)+f(1)成立則稱函數(shù)f(x)有“溜點(diǎn)x0
(1)若函數(shù) 在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)=lg( )在(0,1)上有“溜點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是首項(xiàng)為0的遞增數(shù)列,fn(x)=|sin (x﹣an)|,x∈[an , an+1],n∈N* , 滿足:對(duì)于任意的b∈[0,1),fn(x)=b總有兩個(gè)不同的根,則{an}的通項(xiàng)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)G(5,4),圓C1:(x﹣1)2+(y﹣4)2=25,過點(diǎn)G的動(dòng)直線l與圓C1 , 相交于兩點(diǎn)E、F,線段EF的中點(diǎn)為C. (Ⅰ)求點(diǎn)C的軌跡C2的方程;
(Ⅱ)若過點(diǎn)A(1,0)的直線l1:kx﹣y﹣k=0,與C2相交于兩點(diǎn)P、Q,線段PQ的中點(diǎn)為M,l1與l2:x+2y+2=0的交點(diǎn)為N,求證:|AM||AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2 x+ ,若數(shù)列{bn}滿足:b1=1,bn+1=2f(bn)(n∈N*).若對(duì)n∈N* , 都M∈Z,使得 <M恒成立,則整數(shù)M的最小值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲,乙兩地某月14時(shí)的氣溫,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)當(dāng)a=1時(shí),求A∩B;
(2)若A是B的子集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案