某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其他班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為(  )

A.                                         B.

C.                                        D.

思路解析:先把一班的3位同學(xué)“捆在一起”看作一個元素,加上其他班的5位同學(xué)先排,有種排法.在排好的同學(xué)之間形成了7個空隙,再排二班的2位同學(xué),有種排法.一班的同學(xué)之間的排列也會引起排法的變化,有種.故符合要求的排法有種,概率為

答案:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:(  )
A、
1
10
B、
1
20
C、
1
40
D、
1
120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為           (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為    (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為    (  )

     A.           B.            C.                D.

查看答案和解析>>

同步練習(xí)冊答案