(2013•黃浦區(qū)二模)已知A,B,C是球面上三點,且AB=AC=4cm,∠BAC=90°,若球心O到平面ABC的距離為2
2
,則該球的表面積為
64π
64π
cm3
分析:由已知球面上三點A、B、C滿足∠BAC=90°,可得平面ABC截球所得小圓的直徑等于BC長,進而求出截面圓的半徑r=2
2
,根據(jù)球的截面圓性質,算出球半徑R=
r2+d2
=4,代入球的表面積公式即算出該球的表面積.
解答:解:∵AB=AC=4cm,∠BAC=90°,
∴BC為平面ABC截球所得小圓的直徑,
設小圓半徑為r,得2r=
AB2+AC2
=4
2
,可得半徑r=2
2

又∵球心O到平面ABC的距離d=2
2

∴根據(jù)球的截面圓性質,得球半徑R=
r2+d2
=4
∴球的表面積S=4π•R2=64π
故答案為:64π
點評:本題給出球的截面圓中Rt△ABC的形狀和該截面與球心的距離,求球的表面積,著重考查了球的截面圓性質、勾股定理和球的表面積公式等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)已知f(x)=4-
1
x
,若存在區(qū)間[a,b]⊆(
1
3
,+∞)
,使得{y|y=f(x),x⊆[a,b]}=[ma,mb],則實數(shù)m的取值范圍是
(3,4)
(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)已知點P(x,y)的坐標滿足
x-y+1≥0
x+y-3≥0
x≤2
,O為坐標原點,則|PO|的最小值為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)函數(shù)f(x)=lg(4-2x)的定義域為
(-∞,2)
(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)若復數(shù)z滿足
.
z-1
9z
.
=0
,則z的值為
±3i
±3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃浦區(qū)二模)在正△ABC中,若AB=2,則
AB
AC
=
2
2

查看答案和解析>>

同步練習冊答案