a⊥面α,b∥面α,則直線a與b的位置關(guān)系是


  1. A.
    a∥b
  2. B.
    a⊥b
  3. C.
    a與b垂直且相交
  4. D.
    a與b垂直且異面
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、下列命題中所有正確命題的序號(hào)是
(2)(3)

(1)異面直線是指空間沒(méi)有公共點(diǎn)的兩直線;
(2)如果直線a,b異面,且a⊥平面α,那么b不垂直于平面α;
(3)如果異面直線a,b滿足a∥平面α,b∥平面α,且l⊥平面α,那么l與a,b都垂直;
(4)兩條異面直線在同一平面內(nèi)的射影不可能是兩條平行直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在三棱柱ABC-A′B′C′中,側(cè)面CBB′C′⊥底面ABC,∠B′BC=60°,
∠ACB=90°,且CB=CC′=CA.
(1)求證:平面AB′C⊥平面A′C′B;
(2)求異面直線A′B與AC′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過(guò)軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
CD
C′D′
,
DE
,
D′E′
的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長(zhǎng)A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面α∥平面β,點(diǎn)A,C∈α,B,D∈β,則直線AC∥直線BD的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c是三條直線,下列四個(gè)命題:
①若a⊥b,c⊥b,則a∥c;
②若a,b是異面直線,b,c是異面直線,則a,c是異面直線;
③若a∥b,b∥c,則a∥c;
④若a與b共面,b與c共面,則a與c共面.
其中真命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案