A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
分析 從xf(x+1)=(1+x)f(x)結(jié)構(gòu)來看,要用遞推的方法,先用賦值法求得,再由依此求解.
解答 解:由xf(x+1)=(1+x)f(x),得-$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{2}$f(-$\frac{1}{2}$),
又f(x)為偶函數(shù),
所以f($\frac{1}{2}$)=0,
則$\frac{1}{2}$f($\frac{3}{2}$)=$\frac{3}{2}$f($\frac{1}{2}$),所以f($\frac{3}{2}$)=0,以此類推,可得f($\frac{1}{2}$)=f($\frac{3}{2}$)=…=f($\frac{2009}{2}$)=0,
f(1)=f(-1)=0,
所以1•f(2)=2f(1),所以f(2)=0,
由2f(3)=3f(2),得f(3)=0,以此類推,可得f(1)=f(2)=f(3)=…=f(1005)=0,
由0•f(1)=1•f(0),得f(0)=0,
所以$\sum _{k-0}^{2010}f(\frac{k}{2})$=f(0)+f($\frac{1}{2}$)+f(1)+f($\frac{3}{2}$)+…+f($\frac{2009}{2}$)+f(1005)=0,
故選:A.
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的性質(zhì)是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>0或y>0 | B. | x>0且y>0 | C. | xy>0 | D. | x+y<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 0 | C. | 24 | D. | -24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com