【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),點(diǎn)在第一象限.
若,,求直線的方程;
若,點(diǎn)為準(zhǔn)線上任意一點(diǎn),求證:直線,,的斜率成等差數(shù)列.
【答案】;證明見解析.
【解析】
設(shè)點(diǎn)在準(zhǔn)線上的射影為,由拋物線的定義知,,設(shè),列式聯(lián)立求出,直線AB的斜率為,進(jìn)而寫出直線的方程;
若,則拋物線,準(zhǔn)線,設(shè)直線的方程為,
聯(lián)立得消得,利用韋達(dá)定理,進(jìn)而求出,即可求證.
解:設(shè)點(diǎn)在準(zhǔn)線上的射影為,由拋物線的定義知,
,設(shè),,由題設(shè)知,
,,
解得,則,,即,①
又由拋物線的定義知,,即,②
聯(lián)立①②,解得,或,
,∴,則,
焦點(diǎn)為,,
則直線的斜率為,
故直線的方程為;
證明:若,則拋物線,
,準(zhǔn)線,
設(shè)直線的方程為,
,,,
由消去得,,
則,,
則
又,,
故直線,,的斜率成等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是( )
A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢
B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)
C.月日至月日新增確診人數(shù)波動(dòng)最大
D.我國新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過拋物線的焦點(diǎn),上的點(diǎn)與的兩個(gè)焦點(diǎn)所構(gòu)成的三角形的周長為.
(1)求的方程;
(2)若點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,過點(diǎn)作直線交于另一點(diǎn),交軸于點(diǎn),且∥.判斷是否為定值,若是求出該值;若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,且之間的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓只有一個(gè)公共點(diǎn),求點(diǎn)到直線的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與y軸交于點(diǎn),與x軸交于A,B兩點(diǎn),其中,.
(1)求函數(shù)的解析式;
(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把一塊邊長為的正六邊形鐵皮,沿圖中的虛線(虛線與正六邊形的對(duì)應(yīng)邊垂直)剪去六個(gè)全等的四邊形(陰影部分),折起六個(gè)矩形焊接制成一個(gè)正六棱柱形的無蓋容器(焊接損耗忽略),設(shè)容器的底面邊長為.
(1)若,且該容器的表面積為時(shí),在該容器內(nèi)注入水,水深為,若將一根長度為的玻璃棒(粗細(xì)忽略)放入容器內(nèi),一端置于處,另一端置于側(cè)棱上,忽略鐵皮厚度,求玻璃棒浸人水中部分的長度;
(2)求該容器的底面邊長的范圍,使得該容器的體積始終不大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,.
(Ⅰ)證明:點(diǎn)在底面上的射影必在直線上;
(Ⅱ)若二面角的大小為,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F2的直線分別交雙曲線左、右兩支于點(diǎn)P,Q,點(diǎn)M為線段PQ的中點(diǎn),若P,Q,F1都在以M為圓心的圓上,且,則雙曲線C的離心率為( )
A.B.2C.D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com