(2012•煙臺(tái)一模)定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時(shí)滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù); 
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求實(shí)數(shù)m的取值范圍.
分析:(Ⅰ)求出f′(x)=3ax2+2bx+c,由f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),得到f′(1)=3a+2b+c=0,再由函數(shù)的奇偶性和切線方程能夠求出函數(shù)y=f(x)的解析式.
(Ⅱ)若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1,由此入手,結(jié)合題設(shè)條件,能夠求出實(shí)數(shù)m的取值范圍.
解答:解:(Ⅰ)f′(x)=3ax2+2bx+c
∵f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
∴f′(1)=3a+2b+c=0…①…(1分)
由f′(x)是偶函數(shù)得:b=0②…(2分)
又f(x)在x=0處的切線與直線y=x+2垂直,f′(0)=c=-1③…(3分)
由①②③得:a=
1
3
,b=0,c=-1
,
f(x)=
1
3
x3-x+3
…(4分)
(Ⅱ)由已知得:
若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1
設(shè)h(x)=4lnx-x2+1
m>hmin,對(duì)h(x)求導(dǎo),導(dǎo)數(shù)在(0,
2
)大于零,(
2
,e)小于零,即h(x)先遞增再遞減,
當(dāng)x=
2
.m取最大值+∞,x=e 時(shí),m取最小值5-e2
∴實(shí)數(shù)m的取值范圍是(5-e2,+∞).
點(diǎn)評(píng):本題考查函數(shù)解析式的求法和求實(shí)數(shù)的取值范圍,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想,培養(yǎng)學(xué)生的抽象概括能力、推理論證能力、運(yùn)算求解能力和創(chuàng)新意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)函數(shù)y=
ln|x|
x
的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
則w=log3(2x+y)的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)已知命題p:“a=1是x>0,x+
a
x
≥2的充分必要條件”,命題q:“存在x0∈R,x02+x0-2>0”,則下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),則f(-log35)的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案