分析:(1)利用導(dǎo)數(shù)的幾何意義即可得出;
(2)通過求導(dǎo)得到g
′(x),通過對a分類討論即可得出其單調(diào)性;
(3)證法一:利用斜率計算公式,令
=t(t>1),即證
1-<lnt<t-1(t>1),令
h(t)=lnt+-1(t>1),通過求導(dǎo)利用函數(shù)的單調(diào)性即可得出;
證法二:利用斜率計算公式,令h(x)=lnx-kx,通過求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)性即可得出;
證法三::令
h(x)=lnx-,同理,令
m(x)=lnx-,通過求導(dǎo)即可證明;
證法四:利用斜率計算公式,令h(x)=x-x
1lnx+x
1lnx
1-x
1,及令m(x)=x-x
2lnx+x
2lnx
2-x
2,通過求導(dǎo)得到其單調(diào)性即可證明.
解答:解:(1)依題意得g(x)=lnx+ax
2+bx,則
g′(x)=+2ax+b,
由函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸得:g'(1)=1+2a+b=0,
∴b=-2a-1.
(2)由(1)得
g′(x)==
.
∵函數(shù)g(x)的定義域為(0,+∞),∴當(dāng)a=0時,
g′(x)=-,
由g'(x)>0得0<x<1,由g'(x)<0得x>1,
即函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
當(dāng)a>0時,令g'(x)=0得x=1或
x=,
若
<1,即
a>時,由g'(x)>0得x>1或
0<x<,由g'(x)<0得
<x<1,
即函數(shù)g(x)在
(0,),(1,+∞)上單調(diào)遞增,在
(,1)單調(diào)遞減;
若
>1,即
0<a<時,由g'(x)>0得
x>或0<x<1,由g'(x)<0得
1<x<,
即函數(shù)g(x)在(0,1),
(,+∞)上單調(diào)遞增,在
(1,)單調(diào)遞減;
若
=1,即
a=時,在(0,+∞)上恒有g(shù)'(x)≥0,
即函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
綜上得:當(dāng)a=0時,函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
當(dāng)
0<a<時,函數(shù)g(x)在(0,1)單調(diào)遞增,在
(1,)單調(diào)遞減;在
(,+∞)上單調(diào)遞增;
當(dāng)
a=時,函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
當(dāng)
a>時,函數(shù)g(x)在
(0,)上單調(diào)遞增,在
(,1)單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
(3)證法一:依題意得
k==,
證
<k<,即證
<<,因x
2-x
1>0,即證
<ln<,
令
=t(t>1),即證
1-<lnt<t-1(t>1),
令
h(t)=lnt+-1(t>1),則
h′(t)=-=>0,∴h(t)在(1,+∞)上單調(diào)遞增,
∴h(t)>h(1)=0,即
lnt>1-(t>1)②
綜合①②得
1-<lnt<t-1(t>1),即
<k<.
證法二:依題意得
k==⇒lnx2-kx2=lnx1-kx1,
令h(x)=lnx-kx,則
h′(x)=-k,
由h'(x)=0得
x=,當(dāng)
x>時,h'(x)<0,當(dāng)
0<x<時,h'(x)>0,
∴h(x)在
(0,)單調(diào)遞增,在
(,+∞)單調(diào)遞減,又h(x
1)=h(x
2),
∴
x1<<x2,即
<k<.
證法三:令
h(x)=lnx-,則
h′(x)=-,
當(dāng)x>x
1時,h'(x)<0,∴函數(shù)h(x)在(x
1,+∞)單調(diào)遞減,
∴當(dāng)x
2>x
1時,
h(x2)<h(x1)⇒lnx2-<lnx1-1,即
<;
同理,令
m(x)=lnx-,可證得
<.
證法四:依題意得
k==,
<k< ?<<?x1lnx2-x1lnx1<x2-x1<x2lnx2-x2lnx1令h(x)=x-x
1lnx+x
1lnx
1-x
1,則
h′(x)=1-,當(dāng)x>x
1時,h'(x)>0,∴函數(shù)h(x)在(x
1,+∞)單調(diào)遞增,
∴當(dāng)x
2>x
1時,h(x
2)>h(x
1)=0,即x
1lnx
2-x
1lnx
1<x
2-x
1令m(x)=x-x
2lnx+x
2lnx
2-x
2,則
m′(x)=1-,當(dāng)x<x
2時,m'(x)<0,∴函數(shù)m(x)在(0,x
2)單調(diào)遞減,
∴當(dāng)x
1<x
2時,m(x
1)>h(x
2)=0,即x
2-x
1<x
2lnx
2-x
2lnx
1;
所以命題得證.