【題目】定義:數(shù)列{an}前n項的乘積Tn=a1a2…an , 數(shù)列an=29n , 則下面的等式中正確的是(
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11

【答案】C
【解析】解:∵an=29n , ∴Tn=a1a2…an=28+7++9n=
∴T1=28 , T19=219 , 故A不正確
T3=221 , T17=20 , 故B不正確
T5=230 , T12=230 , 故C正確
T8=236 , T11=233 , 故D不正確
故選C
【考點精析】掌握數(shù)列的定義和表示是解答本題的根本,需要知道數(shù)列中的每個數(shù)都叫這個數(shù)列的項.記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在雅安發(fā)生地震災(zāi)害之后,救災(zāi)指揮部決定建造一批簡易房,供災(zāi)區(qū)群眾臨時居住,房形為長方體,高2.5米,前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價格都用長度來計算(即鋼板的高均為2.5米,用長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復(fù)合鋼板為200元,房頂用其他材料建造,每平方米材料費為200元,每套房材料費控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x,兩側(cè)墻的長為y,一套簡易房所用材料費為p,試用x,y表示p;
(2)一套簡易房面積S的最大值是多少?當(dāng)S最大時,前面墻的長度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要條件,則實數(shù)a的取值范圍是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,若
(1)求角A的大。
(2)已知 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)
x,y,z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)
x,y,z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品, ①用產(chǎn)品編號列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出S的值為(
A.
B.
C.0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是定義域為R的奇函數(shù),當(dāng)x∈[0,+∞)時,f(x)=x(2﹣x),
(1)寫出函數(shù)y=f(x)在x∈(﹣∞,0)時的解析式;
(2)若關(guān)于x的方程f(x)=a恰有兩個不同的解,求a的值.

查看答案和解析>>

同步練習(xí)冊答案