【題目】在平面直角坐標系中,將曲線(為參數(shù))上任意一點經(jīng)過伸縮變換后得到曲線的圖形.以坐標原點為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機構(gòu)對產(chǎn)品進行質(zhì)量檢測,并依據(jù)質(zhì)量指標來衡量產(chǎn)品的質(zhì)量.當時,產(chǎn)品為優(yōu)等品;當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品.第三方檢測機構(gòu)在該產(chǎn)品中隨機抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標的條形圖.用隨機抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機抽取1件,求該產(chǎn)品為優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機構(gòu)對要購買的80件產(chǎn)品進行抽樣檢測.買家、企業(yè)及第三方檢測機構(gòu)就檢測方案達成以下協(xié)議:從80件產(chǎn)品中隨機抽出4件產(chǎn)品進行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔.記企業(yè)的收益為元,求的分布列與數(shù)學期望;
(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機器人在方格上行進,已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從到),若擲出反面,機器人向前移動兩格(從到),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在上.
(1) 求橢圓的方程;
(2) 設(shè)分別是橢圓的上、下焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為和,且在A,B兩點投中與否相互獨立.
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)求球的表面積;
(2)證明:平面平面,且平面平面.
(3)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com