【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大小;
(2)若b=2,求△ABC面積的最大值.

【答案】
(1)解:由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,

∴sinB+cosB=0,即tanB=﹣1,

又0<B<π,∴B=


(2)解:由余弦定理,可得 = ≥2ac+ ac,

∴ac≤ =2(2﹣ ),當(dāng)且僅當(dāng)a=c時(shí)取等號(hào).

∴S△ABC= sinB≤ = ﹣1,

故△ABC面積的最大值為: ﹣1.


【解析】(1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,化簡即可得出.(2)由余弦定理,可得 ,再利用基本不等式的性質(zhì)、三角形面積計(jì)算公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>1,b>0,且a+2b=2,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的頂點(diǎn)分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點(diǎn)C,且在l上不存在到A,B兩點(diǎn)的距離相等的點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,BB1與平面ACD1所成角的正弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對(duì)任意正整數(shù)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)μ及公比q的值,若不存在,請(qǐng)說明理由;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案