某城市近10年居民的年收入與支出之間的關系大致符合(單位:億元),預計今年該城市居民年收入為20億元,則今年支出估計是        億元.

試題分析:根據(jù)題意,由于線性回歸直線方程為,那么可知當時,,因此今年支出估計是億元.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):

2
4
5
6
8

30
40
60
50
70
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.
(參考數(shù)據(jù):    
參考公式:線性回歸方程系數(shù):

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果某地的財政收入x與支出y滿足線性回歸方程y=a+bx+ε(單位:億元),其中b=0.8,a=2,|ε|≤0.5.若今年該地區(qū)的財政收入為10億元,則年支出預計不會超出________億元.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設三組實驗數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3)的回歸直線方程是:=x+,使代數(shù)式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小時,=-,=(,分別是這三組數(shù)據(jù)的橫、縱坐標的平均數(shù)),
若有7組數(shù)據(jù)列表如下:
x
2
3
4
5
6
7
8
y
4
6
5
6.2
8
7.1
8.6
(1)求上表中前3組數(shù)據(jù)的回歸直線方程.
(2)若|yi-(xi+)|≤0.2,即稱(xi,yi)為(1)中回歸直線的擬合“好點”,求后4組數(shù)據(jù)中擬合“好點”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

觀測兩個相關變量,得到如下數(shù)據(jù):






5
4
3
2
1






5
4.1
2.9
2.1
0.9
則兩變量之間的線性回歸方程為(    )
A.    B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某飲料店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x
-2
-1
0
1
2
y
5
4
2
2
1
甲、乙、丙三位同學對上述數(shù)據(jù)進行了研究,分別得到了x與y之間的三個線性回歸方程:①;②;③,④,其中正確方程的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對具有線性相關關系的變量x,y有一組觀測數(shù)據(jù)(xi,yi)( i=1,2,…,8),其回歸直線方程是:,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,則實數(shù)a的值是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校為了解高二學生兩個學科學習成績的合格情況是否有關, 隨機抽取了該年級一次期末考試、兩個學科的合格人數(shù)與不合格人數(shù),得到以下22列聯(lián)表:
 
學科合格人數(shù)
學科不合格人數(shù)
合計
學科合格人數(shù)
40
20
60
學科不合格人數(shù)
20
30
50
合計
60
50
110
(1)據(jù)此表格資料,你認為有多大把握認為“學科合格”與“學科合格”有關;
(2)從“學科合格”的學生中任意抽取2人,記被抽取的2名學生中“學科合格”的人數(shù)為,求的數(shù)學期望.
附公式與表:


0.15
0.10
0.05
0.025
0.010
0.005

2.072
2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若回歸直線方程的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線的方程是(  ).
A.=1.23x+4B.=1.23x+5
C.=1.23x+0.08D.=0.08x+1.23

查看答案和解析>>

同步練習冊答案