(本小題滿(mǎn)分10分)
已知函數(shù).
(1)求證:不論為何實(shí)數(shù)總是為增函數(shù);
(2)確定的值, 使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時(shí), 求的值域.


(1)略
(2)
(3)

解析解: (1) 依題設(shè)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c1/5/ye0xd.gif" style="vertical-align:middle;" />      ……1分
原函數(shù)即  ,設(shè),
=,……2分
, ,
,所以不論為何實(shí)數(shù)總為增函數(shù).    ……4分
(2) 為奇函數(shù), ,即,
,
         ……7分
(3)由(2)知, ,,
  
所以的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/b2/a/f3hxh1.gif" style="vertical-align:middle;" />   ……10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知函數(shù)
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題滿(mǎn)分14分)
設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(1)求P點(diǎn)的縱坐標(biāo);
(2)若;
(3)記為數(shù)列的前n項(xiàng)和,若對(duì)一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使恒成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù)上是增函數(shù).
(I)求實(shí)數(shù)的取值范圍;(6分)
(II)設(shè),求函數(shù)的最小值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分16分)已知函數(shù)是奇函數(shù)
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)試判斷函數(shù)在()上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)  
設(shè),  
(1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;
(2)如果存在,使得成立,求滿(mǎn)足上述條件的最大整數(shù);
(3)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)已知定義域?yàn)镽的函數(shù)是奇函數(shù).
①求實(shí)數(shù)的值;
②用定義證明:在R上是減函數(shù);
③解不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

證明函數(shù)在(-∞,0)上是增函數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案