投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷(xiāo)售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入一前n年的總支出一投資額).
(1)該廠從第幾年開(kāi)始盈利?
(2)若干年后,投資商為開(kāi)發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以10萬(wàn)元出售該廠,問(wèn)哪種方案更合算?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專(zhuān)題:應(yīng)用題,等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,可知每年的支出構(gòu)成一個(gè)等差數(shù)列,故n年的總支出函數(shù)關(guān)系可用數(shù)列的求和公式得到;再根據(jù)f(n)=前n年的總收入-前n年的總支出-投資額,可得前n年的純利潤(rùn)總和f(n)關(guān)于n的函數(shù)關(guān)系式;令f(n)>0,并解不等式,即可求得該廠從第幾年開(kāi)始盈利;
(2)對(duì)兩種決策進(jìn)行具體的比較,以數(shù)據(jù)來(lái)確定那一種方案較好.
解答: 解:(1)由題意,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,可知每年的支出構(gòu)成一個(gè)等差數(shù)列,用g(n)表示前n年的總支出,
∴g(n)=12n+
n(n-1)
2
×4=2n2+10n(n∈N*)…(2分)
∵f(n)=前n年的總收入-前n年的總支出-投資額
∴f(n)=50n-(2n2+10n)-72=-2n2+40n-72.…(3分)
由f(n)>0,即-2n2+40n-72>0,解得2<n<18.…(5分)
由n∈N*知,從第三年開(kāi)始盈利.…(6分)
(2)方案①:年平均純利潤(rùn)為
f(n)
n
=40-2(n+
36
n
)≤16,
當(dāng)且僅當(dāng)n=6時(shí)等號(hào)成立.…(8分)
故方案①共獲利6×16+48=144(萬(wàn)元),此時(shí)n=6.…(9分)
方案②:f(n)=-2(n-10)2+128.
當(dāng)n=10時(shí),[f(n)]max=128.
故方案②共獲利128+10=138(萬(wàn)元).…(11分)
比較兩種方案,選擇方案①更合算.…(12分)
點(diǎn)評(píng):本題以實(shí)際問(wèn)題為載體,考查數(shù)列模型的構(gòu)建,考查解一元二次不等式,同時(shí)考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿(mǎn)足:a2=2,a5=
1
4
,則公比q為( 。
A、-
1
2
B、
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,對(duì)于一條折線C:A1-A2-…-An,若能再作出一條折線C′:A1-B2-B3-…-Bn-1-An,使得A1B2⊥A1A2,B2B3⊥A2A3,…,Bn-1An⊥An-1An(其中A1,A2,A3,…,An,B2,B3,…,Bn-1都是整點(diǎn)),則稱(chēng)折線C′是折線C的一條共軛折線(說(shuō)明:橫、縱坐標(biāo)均為整數(shù)的點(diǎn)成為整點(diǎn)).
(Ⅰ)請(qǐng)分別判斷圖(1),(2)中,虛折線是否是實(shí)折線的一條個(gè),共軛折線;

(Ⅱ)試判斷命題“對(duì)任意的n∈N且n>2,總存在一條折線C:A1-A2-…-An有共軛折線”的真假,并舉例說(shuō)明;
(Ⅲ)如圖(3),折線C:A1-A2-A3-A4,其中A1(0,0),A2(3,1),A3(6,0),A4(9,1).求證:折線C無(wú)共軛折線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3x2-2x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-
a
2
x2+(a+1)x-lnx(a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有
a2-1
2
m+ln2>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且a2=b2+c2+
3
bc.
(Ⅰ)求A;
(Ⅱ)設(shè)a=
3
,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用函數(shù)的單調(diào)性比較大。
(1)sin508°與sin144°;         
(2)cos760°與cos(-770°)
(3)tan(-
π
5
)與tan(-
7
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段PQ的端點(diǎn)Q的坐標(biāo)是(4,3),端點(diǎn)P在圓x2+y2+2x-3=0上運(yùn)動(dòng),求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x2
x+3
在x=2處的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案