(2010•茂名二模)已右集合M={x|x2+3x-4<4},N={x|22x-1>1}則M∩N=( 。
分析:先利用一元二次不等式的解法化簡集合A,再利用指數(shù)函數(shù)的單調(diào)性化簡集合B,最后求出它們的交集即可.
解答:解:∵M={x|x2+7x-4<4}
={x|-8<x<1},
又∵N={x|22x-1>1}={x|x>
1
2
}
∴M∩N=(
1
2
,1)

故選C.
點評:本題主要考查了一元二次不等式的解法、指數(shù)函數(shù)的單調(diào)性、交集及其運算,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•茂名二模)已知f′(x)是f(x)的導函數(shù),f(x)=ln(x+1)+m-2f′(1),m∈R,且函數(shù)f(x)的圖象過點(0,-2).
(1)求函數(shù)y=f(x)的表達式;
(2)設(shè)g(x)=
1x+1
+af(x),(a≠0)
,若g(x)>0在定義域內(nèi)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•茂名二模)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
5
5
,且A(0,1)是橢圓C的頂點.
(1)求橢圓C的方程;
(2)過點A作斜率為1的直線l,在直線l上求一點M,使得以橢圓C的焦點為焦點,且過點M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•茂名二模)定積分∫04π(16-x2)dx等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•茂名二模)設(shè)k∈R,A={(x,y)|
x-2y+5≥0
3-x≥0
kx+y≥0
,B={(x,y)|x2+y2<25},若A?B,則k的取值范圍是
(0,
4
3
)
(0,
4
3
)

查看答案和解析>>

同步練習冊答案