已知函數(shù)有兩個零點(diǎn)x1,x2,則有
A.B.C.D.
B

 
分別作函數(shù)的圖像,如圖:交點(diǎn)的橫坐標(biāo)分別所以
;故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點(diǎn),與l1平行的直線與函數(shù)的圖象切于點(diǎn)R,求證 P,R,Q三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(II)若不等式恒成立,求實(shí)數(shù)a的取值范圍;
(III)求證:〔其中, e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的一元二次方程,求使方程有兩個大于零的實(shí)數(shù)根的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個不同的解,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)滿足,且有唯
一實(shí)數(shù)解。
(1)求的表達(dá)式 ;
(2)記,且,求數(shù)列的通項(xiàng)公式。
(3)記 ,數(shù)列{}的前 項(xiàng)和為 ,是否存在k∈N*,使得
對任意n∈N*恒成立?若存在,求出k的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知二次函數(shù)圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)的圖象與直線的兩個交點(diǎn)間的距離為8,
(1)求函數(shù)的表達(dá)式;
(2)證明:當(dāng)時,關(guān)于的方程有三個實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x,y滿足則x+y的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點(diǎn)’;任何一個三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.如“函數(shù)f(x)=x3-3x2+3x對稱中心為點(diǎn) (1,1)”請你將這一發(fā)現(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)有四個零點(diǎn),則的取值范圍是              

查看答案和解析>>

同步練習(xí)冊答案