給出一列三個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4,或a≥0;
③若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱.
其中正確的命題序號是
①②
①②
分析:①當(dāng)c=0時,f(x)=x|x|+bx,用定義可以驗(yàn)證其為奇函數(shù),反之,若函數(shù)為奇函數(shù),由f(-x)=-f(x)恒成立可以得到c=0;②函數(shù)值域?yàn)镽,說明y=x2+ax-a能取遍所有正實(shí)數(shù),故△≥0,可解得a的范圍;③根據(jù)圖象變換可知函數(shù)f(x)的圖象關(guān)于直線x=-1對稱.
解答:解:①當(dāng)c=0時,f(x)=x|x|+bx
∵f(-x)=(-x)|-x|+b(-x)=-x|x|-bx=-(x|x|+bx)=-f(x)
∴函數(shù)f(x)為奇函數(shù).
反之,∵函數(shù)f(x)=x|x|+bx+c為奇函數(shù)
∴f(-x)=-f(x)恒成立
∴-x|-x|+b(-x)+c=-x|x|-bx-c恒成立
∴2c=0
即c=0
∴函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0.
②∵函數(shù)f(x)=lg(x2+ax-a)的值域是R,
∴函數(shù)y=x2+ax-a能取遍一切正實(shí)數(shù).
∴△=a2-4×(-a)=a2+4a≥0
解得a≤-4,或a≥0.
③∵函數(shù)函數(shù)y=f(x-1)的圖象是偶函數(shù),
∴函數(shù)圖象關(guān)于y軸對稱,
∵函數(shù)y=f(x)的圖象可以由函數(shù)y=f(x-1)的圖象向左平移一個單位得到
故函數(shù)y=f(x)的圖象關(guān)于直線x=-1對稱.
故正確的是①②
點(diǎn)評:本題主要考查了函數(shù)的性質(zhì)及函數(shù)的圖象、充要條件的判斷,尤其第二個命題容易判斷為△<0而產(chǎn)生錯誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給出一列三個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4,或a≥0;
③若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱.
其中正確的命題序號是________.

查看答案和解析>>

同步練習(xí)冊答案