過(guò)點(diǎn)(1,2),并且傾斜角的正弦值為的直線方程是

[  ]

A.4x-3y+2=0    B.4x+3y-6=0

C.3x-4y+6=0    D.3(y-2)=±4(x-1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線l與軌跡W交于A、B兩點(diǎn).
(1)求軌跡W的方程;
(2)若2
AN
=
NB
,求直線l的方程;
(3)對(duì)于l的任意一確定的位置,在直線x=
1
2
上是否存在一點(diǎn)Q,使得
QA
QB
=0,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓過(guò)點(diǎn)A(-2,4),半徑為5,并且以M(-1,3)為中點(diǎn)的弦長(zhǎng)為4
3
,試求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知直線l過(guò)點(diǎn)A(2,0),傾斜角為
π2

(1)寫出直線l的參數(shù)方程;
(2)若有一極坐標(biāo)系分別以直角坐標(biāo)系的原點(diǎn)和x軸非負(fù)半軸為原點(diǎn)和極軸,并且兩坐標(biāo)系的單位長(zhǎng)度相等,在極坐標(biāo)系中有曲線C:ρ2cos2θ=1,求直線l截曲線C所得的弦BC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx,當(dāng)x=-
2
2
時(shí),f(x)取得極大值
2
3
,并且函數(shù)y=f'(x)的圖象關(guān)于y軸對(duì)稱.
(1)求f(x)的表達(dá)式;
(2)若曲線C對(duì)應(yīng)的解析式為g(x)=
1
2
f(x)+
1
2
x+
4
3
,求曲線C過(guò)點(diǎn)P(2,4)的切線方程;
(3)(實(shí))過(guò)點(diǎn)A(1,m)(m≠-
1
3
)
可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案