已知向量
a
與向量
b
的夾角為1200,若向量
c
=
a
+
b
a
c
,則
|
a
|
|
b
|
的值為( 。
分析:利用向量的數(shù)量積公式求出
a
b
,利用向量數(shù)量積的運(yùn)算律求出
a
c
=
a
2
+
a
b
=0
利用向量垂直的充要條件求出向量的模長(zhǎng)之間的關(guān)系
解答:解:∵
a
c

a
c
=
a
•(
a
+
b
)
=0
a
2
+
a
b
=0

∴|
a
||
b
|cos120°+|
a
| 2
=0
-
1
2
|
b
|+|
a
|=0

|
a
|
|
b
|
=
1
2

故選C
點(diǎn)評(píng):本題考查向量的數(shù)量積的運(yùn)用,要求學(xué)生能熟練計(jì)算數(shù)量積并通過(guò)數(shù)量積來(lái)求出向量的模和夾角或證明垂直
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
與向量
b
的夾角為120°,若向量
c
=
a
+
b
,且
a
c
,則
|
a
|
|
b
|
的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
與向量
b
的夾角為
π
3
,|
a
|=2,|
b
|=3,記向量
m
=3
a
-2
b
,
n
=2
a
+k
b

(1)若
m
n
,求實(shí)數(shù)k的值  
(2)是否存在實(shí)數(shù)k,使得
m
n
?若存在,求出實(shí)數(shù)k;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
與向量
b
的夾角為60°,若向量
c
=
b
-2
a
,且
b
c
,則
|
a
|
|
b
|
的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南玉溪一中高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則的值為________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案