精英家教網 > 高中數學 > 題目詳情
某工廠生產甲、乙兩種產品所需原材料噸數及一周內可用工時總量如下表所示.
每噸甲產品消耗每噸乙產品消耗每周可供使用的總量
原材料(噸數)3216
生產時間(小時)5115
已知銷售甲、乙產品每噸的利潤分別為5萬元和2萬元.試問生產甲、乙兩種產品各多少噸時,該廠每周獲得的利潤最大?
【答案】分析:設工廠一周內生產甲產品x噸、乙產品y噸,每周所獲利潤為z萬元,依據題意,得約束條件為,和目標函數z=5x+2y,然后求得最優(yōu)解,即求得利潤的最大值和最大值的狀態(tài).
解答:解:設工廠一周內生產甲產品x噸、乙產品y噸,每周所獲利潤為z萬元. (1分)
依據題意,得約束條件為. (4分)
求目標函數z=5x+2y的最大值.            (6分)
畫出約束條件的可行域,如圖陰影部分所示.     (8分)
將直線5x+2y=0向上平移,可以發(fā)現,經過可行域的最后一個點B(2,5)時,函數z=5x+2y的值最大(也可通過代凸多邊形端點進行計算求得),最大值為5×2+2×5=20(萬元). (11分)
所以每周生產甲產品2噸,乙產品5噸時,工廠可獲得的周利潤最大(20萬元).(12 分)
點評:本題主要考查用簡單的線性規(guī)劃研究目標函數的最大和最小值,關鍵是通過平面區(qū)域,求得最優(yōu)解,屬于線性規(guī)劃的應用題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某工廠生產甲、乙兩種產品,甲產品的一等品率為80%,二等品率為20%;乙產品的一等品率為90%,二等品率為10%.生產1件甲產品,若是一等品則獲得利潤4萬元,若是二等品則虧損1萬元;生產1件乙產品,若是一等品則獲得利潤6萬元,若是二等品則虧損2萬元.設生產各種產品相互獨立.
(1)記X(單位:萬元)為生產1件甲產品和1件乙產品可獲得的總利潤,求X的分布列;
(2)求生產4件甲產品所獲得的利潤不少于10萬元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

18、某工廠生產甲、乙兩種產品,每種產品都是經過第一道和第二道工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級,對每種產品,兩道工序的加工結果都為A級時,產品為一等品,其余均為二等品
(1)已知甲、乙兩種產品每一道工序的加工結果為A級的概率如表一所示,分別求生產的甲、乙產品為一等品的概率P、P
(2)已知一件產品的利潤如表二所示,用ξ、η分別表示一件甲、乙產品的利潤,在(1)的條件下,分別求甲、乙兩種產品利潤的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

某工廠生產甲、乙兩種產品.已知生產一噸甲產品、一噸乙產品所需要的煤、電以及產值如表所示;
用煤(噸) 用電(千瓦) 產值(萬元)
生產一噸甲種產品 7 2 8
生產一噸乙種產品 3 5 11
又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產,才能使該廠日產值最大?最大的產值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

某工廠生產甲、乙兩種產品,這兩種產品每千克的產值分別為600元和400元,已知每生產1千克甲產品需要A種原料4千克,B種原料2千克;每生產1千克乙產品需要A種原料2千克,B種原料3千克.但該廠現有A種原料100千克,B種原料120千克.問如何安排生產可以取得最大產值,并求出最大產值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某工廠生產甲、乙兩種產品,已知生產每噸甲產品所需電力4千瓦時、勞力6個,獲得利潤5百元;生產每噸乙產品所需電力5千瓦時、勞力4個,獲得利潤4百元;每天資源限額(最大供應量)分別為電力202千瓦時、勞動力240個.
問:每天生產甲、乙兩種產品各多少噸,獲得利潤總額最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案