已知,且,則實(shí)數(shù)的取值范圍是
A.B.
C.D.
D
,當(dāng)時(shí),因?yàn)楫?dāng)時(shí)單調(diào)遞增,所以由可得;當(dāng)時(shí),,符合;當(dāng)時(shí),由可得,則,解得。綜上可得,,故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)=則f(ln3)= (   )
A.ln3-1B.C.eD.3e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)已知,則實(shí)數(shù)的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)對(duì)于任意都有且當(dāng)時(shí),有
(1)  判斷的奇偶性與單調(diào)性,并證明你的結(jié)論;
(2)  設(shè)不等式對(duì)于一切恒成立,求整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若定義在上的函數(shù)滿足條件:存在實(shí)數(shù),使得:
⑴ 任取,有是常數(shù));
⑵ 對(duì)于內(nèi)任意,當(dāng),總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對(duì)于(2)中的函數(shù),若上有兩個(gè)不相等的根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)=       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.設(shè)偶函數(shù)滿足,則不等式>0的解集為_(kāi)____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)的反函數(shù)為,若,則實(shí)數(shù)的值是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則      

查看答案和解析>>

同步練習(xí)冊(cè)答案