18.若圓C:x2+y2=4上的點到直線l:y=x+a的最小距離為2,則a=( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$±2\sqrt{2}$D.$±4\sqrt{2}$

分析 根據(jù)圓的性質(zhì)可知圓心到直線的距離為4,利用點到直線的距離公式列方程解出即可.

解答 解:圓C的圓心為(0,0),半徑r=2,
∴圓心C到直線l的距離d=$\frac{|a|}{\sqrt{2}}$,
∵圓C上的點到直線l的最小距離為2,
∴圓心到直線l的距離d=2+r=4.
∴$\frac{|a|}{\sqrt{2}}$=4,∴a=±4$\sqrt{2}$.
故選D.

點評 本題考查了直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某情報站有A,B,C,D四種互不相同的密碼,每周使用其中的一種密碼,且每周都是從上周未使用的三種密碼中等可能地隨機選用一種.設(shè)第1周使用A種密碼,那么第7周也使用A種密碼的概率是$\frac{61}{243}$.(用最簡分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示,則該幾何體的表面積是32+4$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上動點P,Q,O為原點:
(1)若|OP|2+|OQ|2=a2+b2,求證:|kOP•kOQ|為定值;
(2)點B(0,b),若BP⊥BQ,求證:直線PQ過定點;
(3)若OP⊥OQ,求證:直線PQ為定圓的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元)12345
銷售收益y(單位:萬元)2327
表中的數(shù)據(jù)顯示,與y之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算y關(guān)于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為$\frac{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若A={x|2≤2x≤8},B={x|log2x>1},則A∩B={x|2<x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是( 。
A.任何事件的概率總是在(0,1)之間
B.頻率是客觀存在的,與試驗次數(shù)無關(guān)
C.概率是隨機的,在試驗前不能確定
D.隨著試驗次數(shù)的增加,頻率一般會越來越接近概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|$\frac{1-x}{1+x}$>0},B={x|lg(x+9)<1},則A∩B=( 。
A.(-1,1)B.(-∞,1)C.{0}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊答案