已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn).求證:
(1)x1x2為定值;
(2)
1
|FA|
+
1
|FB|
為定值.
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出直線AB的方程,與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1x2的值,最后驗(yàn)證斜率不存在時(shí)的情況.
(2)由拋物線的定義分別表示出|FA|,|FB|,代入
1
|FA|
+
1
|FB|
整理得到定值,最后驗(yàn)證斜率不存在時(shí)的情況.
解答: (1)拋物線的焦點(diǎn)為F(
p
2
,0),設(shè)直線AB的方程為y=k(x-
p
2
)(k≠0),
y=k(x-
p
2
)
y2=2px
,消去y,得k2x2-p(k2+2)x+
k2p2
4
=0,
由根與系數(shù)的關(guān)系,得x1x2=
p2
4
(定值).
當(dāng)AB⊥x軸時(shí),x1=x2=
p
2
,x1x2=
p2
4
,也成立.
(2)由拋物線的定義,知|FA|=x1+
p
2
,|FB|=x2+
p
2

1
|FA|
+
1
|FB|
=
1
x1+
p
2
+
1
x2+
p
2
=
x1+x2+p
x1
p
2
+x2
p
2
+x1x2+
p2
4
=
2
p
(定值).
當(dāng)AB⊥x軸時(shí),|FA|=|FB|=p,上式仍成立.
點(diǎn)評(píng):本題主要考查了拋物線的簡單性質(zhì),直線與拋物線的關(guān)系.在設(shè)直線方程時(shí),一定不要忘了斜率不存在時(shí)的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若tanθ=
1
3
,則2cos2θ-sin(2θ-π)的值為( 。
A、
12
5
B、
8
5
C、-
8
5
D、-
12
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)的元素個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)若0<a<1,解不等式f(x2+6x)+f(4-x)<0;
(3)若f(1)=
3
2
,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2是函數(shù)f(x)=4cosωxsin(ωx+
π
6
)+1兩相鄰零點(diǎn),且滿足|x1-x2|=π,其中ω>0.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間[-
π
6
π
4
]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(1)當(dāng)
a
b
時(shí),求2cos2x-sin2x的值;
(2)求f(x)=(
a
+
b
)•
b
在[-
π
2
,0]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 乙班 合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.79 10.828
(參考公式:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
m
=(2cosA,
3
sinA),
n
=(cosA,-2cosA),
m
n
=-1.
(1)若a=2
3
,c=2,求S△ABC
(2)求
b-2c
2cos(
π
3
+C)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

條件p:-2<x<4,條件q:(x+2)(x+a)<0;若p是q的充分而不必要條件,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案