(2012•吉林二模)已知:P(
3
2
,
1
2
)
、Q(cosα,sinα)(α∈(
π
2
,π))
是坐標平面上的點,O是坐標原點.
(Ⅰ)若點Q的坐標是(-
3
5
,m)
,求cos(a-
π
6
)
的值;
(Ⅱ)設函數(shù)f(α)=
OP
OQ
,求f(a)的值域.
分析:(I)由已知條件,可得sinα和cosα的值,再結(jié)合兩角差的余弦公式,可算出cos(α-
π
6
)
的值;
(II)根據(jù)平面向量數(shù)量積的坐標公式和兩角差的余弦公式,可得f(α)=cos(α-
π
6
),再結(jié)合余弦函數(shù)的圖象與性質(zhì),可得函數(shù)f(α)=的值域.
解答:解:(Ⅰ)由已知條件,得cosα=-
3
5
,m=sinα=
4
5
.…(3分)
所以cos(α-
π
6
)
=cosαcos
π
6
+sinαsin
π
6
=-
3
5
×
3
2
+
4
5
×
1
2
=
4-3
3
10
.…(6分)
(Ⅱ)f(α)=
OP
OQ
=cos
π
6
cosα+sin
π
6
sinα=cos(α-
π
6
) …(9分)
因為α∈(
π
2
,π)
,則α+
π
6
∈(
π
3
,
6
)
,
-
3
2
<cos(α+
π
6
)<
1
2

故f(α)的值域是(-
3
2
,
1
2
)
.…(12分)
點評:本題以平面向量的數(shù)量積坐標運算為載體,著重考查了兩角差的余弦公式和余弦函數(shù)的圖象與性質(zhì)等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設函數(shù)f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設集合A={x|0≤x<1},B={x|1≤x≤2},函數(shù)f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,則x0的取值范圍是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設函數(shù)f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,則A=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)執(zhí)行程序框圖,若輸出的結(jié)果是
15
16
,則輸入的a為( 。

查看答案和解析>>

同步練習冊答案