【題目】已知數(shù)列{an}滿足a1=1,且an=2an﹣1+2n(n≥2,且n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列{an}的前n項之和Sn , 求證: .
【答案】
(1)證明:∵an=2an﹣1+2n(≥2,且n∈N*)
∴
∴
∴數(shù)列{ }是以 為首項,1為公差的等差數(shù)列
(2)解:由(1)得
∴an=
(3)解:∵Sn= + +…+
∴2Sn= + +…+
兩式相減可得﹣Sn=1+22+23+…+2n﹣ =(3﹣2n)2n﹣3
∴Sn=(2n﹣3)2n+3>(2n﹣3)2n
∴
【解析】(1)利用an=2an﹣1+2n(≥2,且n∈N*),兩邊同除以2n , 即可證明數(shù)列{ }是等差數(shù)列;(2)求出數(shù)列{ }的通項,即可求數(shù)列{an}的通項公式;(3)先錯位相減求和,再利用放縮法,即可證得結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用等差關(guān)系的確定和數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由函數(shù)y=sin x 的圖象經(jīng)過( )變換,得到函數(shù) y=sin(2x﹣ )的圖象.
A.縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的 ,再向右平移 個單位
B.縱坐標(biāo)不變,向右平移 個單位,再橫坐標(biāo)縮小到原來的
C.縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大到原來的 2 倍,再向左平移 個單位
D.縱坐標(biāo)不變,向左平移 個單位,再橫坐標(biāo)擴(kuò)大到原來的 2 倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對于函數(shù)f(x)的定義域中任意的x1 , x2(x1≠x2),恒有 和 成立,則稱函數(shù)f(x)為“單凸函數(shù)”,下列有四個函數(shù):
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2 .
其中是“單凸函數(shù)”的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,an=﹣4n+5,等比數(shù)列{bn}的公比q滿足q=an﹣an﹣1(n≥2),且b1=a2 , 則|b1|+|b2|+…+|bn|=( )
A.1﹣4n
B.4n﹣1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中, , ,且△ABC的周長為 .
(1)求點A的軌跡方程C;
(2)過點P(2,1)作曲線C的一條弦,使弦被這點平分,求此弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a,E為側(cè)棱PC的中點,又作DF⊥PB交PB于點F,則PB與平面EFD所成角為( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (2x﹣2﹣x)(a>0,且a≠1).
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性,并說明理由;
(2)當(dāng)x∈(﹣1,1)時,總有f(m﹣1)+f(m)<0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線3x﹣y+ =0截以原點O為圓心的圓所得的弦長為
(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于點D、E,當(dāng)DE長最小時,求直線l的方程;
(3)設(shè)M、P是圓O上任意兩點,點M關(guān)于x軸的對稱點為N,若直線MP、NP分別交x軸于點(m,0)和(n,0),問mn是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點G(5,4),圓C1:(x﹣1)2+(y﹣4)2=25,過點G的動直線l與圓C1 , 相交于兩點E、F,線段EF的中點為C. (Ⅰ)求點C的軌跡C2的方程;
(Ⅱ)若過點A(1,0)的直線l1:kx﹣y﹣k=0,與C2相交于兩點P、Q,線段PQ的中點為M,l1與l2:x+2y+2=0的交點為N,求證:|AM||AN|為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com