已知函數(shù)f(x)=logm

(1)判斷f(x)的奇偶性并證明;

(2)若f(x)的定義域?yàn)閇α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;

(3)若0<m<1,使f(x)的值域?yàn)閇logmm(β-1),logmm(α-1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)由的定義域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/2847/0020/f7cf6095e24d15cbb39907655ac194c7/C/Image58.gif" width=118 height=21>,關(guān)于原點(diǎn)對(duì)稱.

  

  為奇函數(shù)  3分

  (2)的定義域?yàn)閇](),則[].設(shè),[],則,且,,  5分

  ,  6分

  ∴當(dāng)時(shí),,即  7分

  當(dāng)時(shí),,即  8分

  故當(dāng)時(shí),為減函數(shù);時(shí),為增函數(shù)  9分

  (3)由(1)得,當(dāng)時(shí),在[]為遞減函數(shù),∴若存在定義域[](),使值域?yàn)閇],則有  12分

  ∴ ∴是方程的兩個(gè)解  13分

  解得當(dāng)時(shí),[]=,

  當(dāng)時(shí),方程組無(wú)解,即[]不存在  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說(shuō)明理由.

(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過(guò)原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過(guò)點(diǎn)P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案