在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2

(1)求圓O和直線l的直角坐標方程;
(2)當θ∈(0,π)時,求直線l與圓O公共點的極坐標.
分析:(1)圓O的方程即ρ2=ρcosθ+ρsinθ,可得圓O 的直角坐標方程為:x2+y2=x+y,即x2+y2-x-y=0.
(2)由
x2+2-x-y=0
x-y+1=0
,可得直線l與圓O公共點的直角坐標為(0,1),由此求得線l與圓O公共點的極坐標.
解答:解:(1)圓O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,
故圓O 的直角坐標方程為:x2+y2=x+y,即x2+y2-x-y=0.
直線l:ρsin(θ-
π
4
)=
2
2
,即ρsinθ-ρcosθ=1,則直線的直角坐標方程為:y-x=1,即x-y+1=0.
(2)由
x2+2-x-y=0
x-y+1=0
,可得 
x=0
y=1
,直線l與圓O公共點的直角坐標為(0,1),
故直線l 與圓O 公共點的一個極坐標為(1,
π
2
)
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2
,
(1)求圓O和直線l的直角坐標方程;
(2)當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系下,已知圓C的方程為ρ=2cosθ,則下列各點在圓C上的是(  )
A、(1,-
π
3
)
B、(1,
π
6
)
C、(
2
,
4
)
D、(
2
,
4
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•貴陽二模)選修4-4:坐標系與參數(shù)方程
 在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2
,
(I)以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系.求圓O和直線l的直角坐標方程;
(II)當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系下,已知圓O:和直線

(1)求圓O和直線的直角坐標方程;

(2)當時,求直線與圓O公共點的一個極坐標.

查看答案和解析>>

同步練習冊答案