已知△ABC的兩條高所在直線的方程分別為x+y=0,2x-3y+1=0,且點A的坐標為(1,2),
(1)求△ABC的垂心坐標;(注:三角形三條高所在直線交于一點,交點叫做垂心)
(2)求BC邊上的高所在直線的方程.
(1)∵三角形三條高所在直線交于一點,交點叫做垂心,
已知△ABC的兩條高所在直線的方程分別為x+y=0,2x-3y+1=0,
解方程組:
x+y=0
2x-3y+1=0
得:
x= -
1
5
y=
1
5
,
∴△ABC的垂心坐標(-
1
5
,
1
5
);
(2)∵點A的坐標為(1,2),
根據(jù)直線方程的兩點式得:
y-2
1
5
-2
=
x-1
-
1
5
-1

即:9x-11y+13=0.
∴BC邊上的高所在直線的方程9x-11y+13=0.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的兩條高線所在直線的方程為2x-3y+1=0和x+y=0,頂點A(1,2),求:
(1)BC邊所在直線的方程;
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的兩條高線所在的直線方程為2x-3y+1=0和x+y=0,頂點A(1,2)求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的兩條高所在直線的方程分別為x+y=0,2x-3y+1=0,且點A的坐標為(1,2),
(1)求△ABC的垂心坐標;(注:三角形三條高所在直線交于一點,交點叫做垂心)
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省阜陽市界首一中高一(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知△ABC的兩條高線所在的直線方程為2x-3y+1=0和x+y=0,頂點A(1,2)求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省高考數(shù)學一輪復(fù)習:8.3 兩條直線的位置關(guān)系(解析版) 題型:解答題

已知△ABC的兩條高線所在直線的方程為2x-3y+1=0和x+y=0,頂點A(1,2),求:
(1)BC邊所在直線的方程;
(2)△ABC的面積.

查看答案和解析>>

同步練習冊答案