若函數(shù)f(x)=x2+ax-1,(a∈R)在區(qū)間[-1,1]上的最小值為-14,求a的值.

解:二次函數(shù)圖象的對(duì)稱軸方程為;
(1)當(dāng),即a≥2時(shí);y最小=f(-1)=-a,
依題意知a=14.(5分)
(2)當(dāng),即-2<a<2時(shí);,
依題意知,解得(舍去).(7分)
(3)當(dāng),即a≤-2時(shí);y最小=f(1)=a,
依題意知a=-14.
綜上所述:a=±14.(12分)
分析:由已知中函數(shù)f(x)=x2+ax-1,(a∈R)在區(qū)間[-1,1]上的最小值為-14,根據(jù)二次函數(shù)在定區(qū)間上最值的求法,分別分析區(qū)間在函數(shù)對(duì)稱軸左側(cè)、區(qū)間在函數(shù)對(duì)稱軸右側(cè)、區(qū)間在函數(shù)對(duì)稱軸兩側(cè)三種情況下a的取值,綜合后可得答案.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),其中熟練掌握二次函數(shù)在定區(qū)間上最值的求法,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax-1在x∈[1,3]是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x2-4x|-a的零點(diǎn)個(gè)數(shù)為3,則a=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
-x2+2x+3
,則f(x)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2•lga-6x+2與X軸有且只有一個(gè)公共點(diǎn),那么實(shí)數(shù)a的取值范圍是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南二模)下列命題:
①若函數(shù)f(x)=x2-2x+3,x∈[-2,0]的最小值為2;
②線性回歸方程對(duì)應(yīng)的直線
?
y
=
?
b
x+
?
a
至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn);
③命題p:?x∈R,使得x2+x+1<0則¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均數(shù)為a,方差為b,則x1+5,x2+5,…,x10+5的平均數(shù)為a+5,方差為b+25.
其中,錯(cuò)誤命題的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案