【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ1.

1)求C1的極坐標(biāo)方程,并求C1C2交點(diǎn)的極坐標(biāo);

2)若曲線C3θβρ0)與C1,C2的交點(diǎn)分別為M,N,求|OM||ON|的值.

【答案】1ρ24ρcosθ0;C1C2交點(diǎn)的極坐標(biāo)為(2,),(2,)(24

【解析】

1)根據(jù)同角三角函數(shù)關(guān)系式,消去參數(shù),可得C1的直角坐標(biāo)方程,再由xρcosθ,yρsinθ代入可得極坐標(biāo)方程;聯(lián)立C1C2的極坐標(biāo)方程,即可得到交點(diǎn)坐標(biāo);

2)分別聯(lián)立曲線C3C1,C3C2的極坐標(biāo)方程,分別得到OMON的長度,再求值即可.

解:(1)由α為參數(shù))消去參數(shù)可得(x22+y24,即x2+y24x0,

,則ρ24ρcosθ0,

C1的極坐標(biāo)方程為ρ4cosθ.

,可得4cos2θ1,又,所以θ=±,ρ2.

C1C2交點(diǎn)的極坐標(biāo)為(2,),(2,.

2)由,可得|OM|4cosβ,

,可得|ON|,

所以|OM||ON|4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,BD為四邊形的一條對角線,且,將沿BD向上翻折,當(dāng)點(diǎn)A在平面BCD內(nèi)的投影恰好為的外心E時,設(shè)直線AE與平面ABC,ACDABD的夾角分別為,,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為射線交曲線C于點(diǎn)A,傾斜角為α的直線l過線段OA的中點(diǎn)B且與曲線C交于PQ兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程及直線l的參數(shù)方程;

(2)當(dāng)直線l傾斜角α為何值時, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD為等腰梯形,AB4,ADDCCB2,△ADC沿AC折起,使得平面ADC⊥平面ABCEAB的中點(diǎn),連接DEDB(如圖2.

1)求證:BCAD

2)求直線DE與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點(diǎn)為,曲線上任意一點(diǎn)到的距離等于該點(diǎn)到直線的距離.

(Ⅰ)求及曲線的方程;

(Ⅱ)若直線與橢圓只有一個交點(diǎn),與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,.過焦點(diǎn)且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過點(diǎn)的直線與橢圓相交于兩點(diǎn),若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中有大小、形狀、質(zhì)地相同的兩個白球和三個黑球.現(xiàn)有一抽獎游戲規(guī)則如下:抽獎?wù)呙看斡蟹呕氐膹目诖须S機(jī)取出一個球,最多取球2n1(n)次.若取出白球的累計(jì)次數(shù)達(dá)到n1時,則終止取球且獲獎,其它情況均不獲獎.記獲獎概率為

1)求;

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.每年交強(qiáng)險最終保險費(fèi)計(jì)算方法是:交強(qiáng)險最終保險費(fèi),其中a為交強(qiáng)險基礎(chǔ)保險費(fèi),A為與道路交通事故相聯(lián)系的浮動比率,同時滿足多個浮動因素的,按照向上浮動或者向下浮動比率的高者計(jì)算.按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險基礎(chǔ)費(fèi)率表》的規(guī)定:普通6座以下私家車的交強(qiáng)險基礎(chǔ)保險費(fèi)950元,交強(qiáng)險費(fèi)率浮動因素及比率如下表:

交強(qiáng)險浮動因素和浮動費(fèi)率比率表

類型

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

上兩個年度未發(fā)生有責(zé)任道路交通事故

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及以上有責(zé)任道路交通事故

上一個年度發(fā)生有責(zé)任道路交通死亡事故

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了100輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計(jì)結(jié)果如下表:

類型

數(shù)量

25

10

10

25

20

10

以這100輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題.

1)記X為一輛該品牌車在第四年續(xù)保時的費(fèi)用,求X的分布列與數(shù)學(xué)期望(數(shù)學(xué)期望值保留到個位數(shù)字);

2)某二手車銷售商專門銷售這一品牌的二手車,且將經(jīng)銷商購車后下一年的交強(qiáng)險最終保險費(fèi)高于交強(qiáng)險基礎(chǔ)保險費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損3000元,購進(jìn)一輛非事故車盈利5000.

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛是事故車的概率;

②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望.

查看答案和解析>>

同步練習(xí)冊答案