【題目】如圖,在四棱錐中,PA⊥平面ABCDABAD,ACCD,∠ABC=60°,PAABBCEPC的中點(diǎn).證明:

(1)CDAE;

(2)PD⊥平面ABE.

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

(1)關(guān)鍵證明CD⊥平面PAC,(2)關(guān)鍵證明AEPD,ABPD。

證明:(1)在四棱錐中,

PA⊥平面ABCD,CD平面ABCD,

PACD.∵ACCDPA∩ACA,

CD⊥平面PAC.

AE平面PAC,∴CDAE.

(2)由PAABBC,ABC60°,可得ACPA.

EPC的中點(diǎn),∴AEPC.

由(1)知AECD,且PC∩CDC,

AE⊥平面PCD.

PD平面PCD,∴AEPD.

PA⊥平面ABCD,∴PAAB.

又∵ABADPA∩ADA,

AB⊥平面PAD,而PD平面PAD,

ABPD.

又∵AB∩AEA,

PD⊥平面ABE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為調(diào)查會(huì)員某年度上半年的消費(fèi)情況制作了有獎(jiǎng)?wù){(diào)查問(wèn)卷發(fā)放給所有會(huì)員,并從參與調(diào)查的會(huì)員中隨機(jī)抽取名了解情況并給予物質(zhì)獎(jiǎng)勵(lì).調(diào)查發(fā)現(xiàn)抽取的名會(huì)員消費(fèi)金額(單位:萬(wàn)元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費(fèi)金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會(huì)員上半年消費(fèi)金額的平均值與中位數(shù);(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值)

(2)現(xiàn)采用分層抽樣的方式從前組中選取人進(jìn)行消費(fèi)愛(ài)好調(diào)查,然后再?gòu)那?/span>組選取的人中隨機(jī)選人,求這人都來(lái)自第組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年開(kāi)始,我省將試行“3+1+2“的普通高考新模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門(mén)必選科目外,考生再?gòu)奈锢怼v史中選1門(mén),從化學(xué)、生物、地理、政治中選2門(mén)作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門(mén)科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多

B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分

C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史

D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng),且上的增函數(shù),求實(shí)數(shù)的取值范圍;

2)當(dāng),且對(duì)任意實(shí)數(shù),關(guān)于的方程總有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò),直線與橢圓交于,兩點(diǎn)(,兩點(diǎn)不是左右頂點(diǎn)),若直線的斜率為時(shí),弦的中點(diǎn)在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點(diǎn)為直徑的圓過(guò)橢圓的右頂點(diǎn),則直線是否經(jīng)過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意的,總存在,使得恒成立,則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,邊上的中線長(zhǎng)為,則的面積是____

查看答案和解析>>

同步練習(xí)冊(cè)答案