【題目】如圖,在四棱錐中,PA⊥平面ABCD,ABADACCD,∠ABC=60°,PAABBC,EPC的中點.證明:

(1)CDAE;

(2)PD⊥平面ABE.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)關(guān)鍵證明CD⊥平面PAC,(2)關(guān)鍵證明AEPD,ABPD。

證明:(1)在四棱錐中,

PA⊥平面ABCD,CD平面ABCD

PACD.∵ACCD,PA∩ACA,

CD⊥平面PAC.

AE平面PAC,∴CDAE.

(2)由PAABBCABC60°,可得ACPA.

EPC的中點,∴AEPC.

由(1)知AECD,且PC∩CDC,

AE⊥平面PCD.

PD平面PCD,∴AEPD.

PA⊥平面ABCD,∴PAAB.

又∵ABADPA∩ADA

AB⊥平面PAD,而PD平面PAD,

ABPD.

又∵AB∩AEA,

PD⊥平面ABE.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)

(2)現(xiàn)采用分層抽樣的方式從前組中選取人進行消費愛好調(diào)查,然后再從前組選取的人中隨機選人,求這人都來自第組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學、外語3門必選科目外,考生再從物理、歷史中選1門,從化學、生物、地理、政治中選2門作為選考科目.為了幫助學生合理選科,某中學將高一每個學生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達圖.甲同學的成績雷達圖如圖所示,下面敘述一定不正確的是(  )

A.甲的物理成績領(lǐng)先年級平均分最多

B.甲有2個科目的成績低于年級平均分

C.甲的成績從高到低的前3個科目依次是地理、化學、歷史

D.對甲而言,物理、化學、地理是比較理想的一種選科結(jié)果

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當,且上的增函數(shù),求實數(shù)的取值范圍;

2)當,且對任意實數(shù),關(guān)于的方程總有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在坐標原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經(jīng)過定點,若是,求出定點坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意的,總存在,使得恒成立,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,邊上的中線長為,則的面積是____

查看答案和解析>>

同步練習冊答案