已知平面α∥β,直線(xiàn)l?α,點(diǎn)P∈l,平面α、β間的距離為5,則在β內(nèi)到點(diǎn)P的距離為13且到直線(xiàn)l的距離為的點(diǎn)的軌跡是( )
A.一個(gè)圓
B.四個(gè)點(diǎn)
C.兩條直線(xiàn)
D.雙曲線(xiàn)的一支
【答案】分析:如圖所示:作PH⊥β,H為垂足,過(guò)H 作直線(xiàn)m∥l,則m是l在平面β內(nèi)的攝影.作HA⊥m,且HA=PH=5,則由三垂線(xiàn)定理可得 PA⊥l,作AM∥m,且 AM=,有勾股定理可得MP=13,故M在所求的軌跡上.據(jù)點(diǎn)M在面β內(nèi),可得滿(mǎn)足條件的M共有4個(gè).
解答:解:如圖所示:作PH⊥β,H為垂足,則PH=5.
過(guò)H 作直線(xiàn)m∥l,則m是l在平面β內(nèi)的攝影.
作HA⊥m,且HA=PH=5,
則由三垂線(xiàn)定理可得 PA⊥m,∴PA⊥l,故 PA=5
作AM∥m,且 AM=,有勾股定理可得MP=13,故M在所求的軌跡上.又點(diǎn)M在面β內(nèi),
故滿(mǎn)足條件的M共有4個(gè),
故選 B.
點(diǎn)評(píng):本題考查勾股定理、三垂線(xiàn)定理的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,確定點(diǎn)M的位置,是解題的難點(diǎn)和關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知平面α,β和直線(xiàn),給出條件:
①m∥α;
②m⊥α;
③m?α;
④α⊥β;
⑤α∥β.
(i)當(dāng)滿(mǎn)足條件
③⑤
時(shí),有m∥β;(ii)當(dāng)滿(mǎn)足條件
②⑤
時(shí),有m⊥β.(填所選條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知平面α、β和直線(xiàn)m,給出條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.為使m∥β,應(yīng)選擇下面四個(gè)選項(xiàng)中的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州一模)如圖,已知平面QBC與直線(xiàn)PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)PQ⊥平面QBC,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題
①過(guò)平面外一點(diǎn)有且僅有一個(gè)平面與已知平面垂直
②過(guò)直線(xiàn)外一點(diǎn)有且僅有一個(gè)平面與已知直線(xiàn)平行
③過(guò)直線(xiàn)外一點(diǎn)有且僅有一條直線(xiàn)與已知直線(xiàn)垂直
④過(guò)平面外一點(diǎn)有且僅有一條直線(xiàn)與已知平面垂直
其中正確命題的個(gè)數(shù)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湛江一模)已知平面α,β,直線(xiàn)a?平面α,則“直線(xiàn)a∥平面β”是“平面α∥平面β”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案