(2007•嘉定區(qū)一模)計算:
lim
n→∞
2n-1
3n+1
=
2
3
2
3
分析:分子分母同時除以n,原式簡化為
lim
n→∞
2-
1
n
3+
1
n
,由此可求極限
解答:解:
lim
n→∞
2n-1
3n+1
=
lim
n→∞
2-
1
n
3+
1
n
=
2
3

故答案為
2
3
點評:本題考查
型極限問題,解題的關(guān)鍵是合理地選取公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2007•嘉定區(qū)一模)下列4個命題中,真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•嘉定區(qū)一模)無窮數(shù)列{an}中,an=
1
2n
,則a2+a4+…+a2n+…=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•嘉定區(qū)一模)若復(fù)數(shù)
m2+i1+mi
(i為虛數(shù)單位)是純虛數(shù),則實數(shù)m=
0或-1
0或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•嘉定區(qū)一模)在平面直角坐標系內(nèi),直線l1:x-2ay+1=0和直線l2:2ax+y-1=0(a∈R)的關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•嘉定區(qū)一模)已知函數(shù)f(x)=
|x+m-1|x-2
,m>0且f(1)=-1.
(1)求實數(shù)m的值;
(2)判斷函數(shù)y=f(x)在區(qū)間(-∞,m-1]上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明;
(3)求實數(shù)k的取值范圍,使得關(guān)于x的方程f(x)=kx分別為:
①有且僅有一個實數(shù)解;
②有兩個不同的實數(shù)解;
③有三個不同的實數(shù)解.

查看答案和解析>>

同步練習冊答案