【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.
(1)求角B的大小;
(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.
【答案】(1)B(2)
【解析】
(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;
(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.
(1)因?yàn)?/span>b(a2+c2﹣b2)=ca2cosC+ac2cosA,
∴,即2bcosB=acosC+ccosA
由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,
因?yàn)?/span>,所以,
所以B;
(2)由正弦定理可得,b=2RsinB2,
由余弦定理可得,b2=a2+c2﹣2accosB,
即a2+c2﹣ac=4,因?yàn)?/span>a2+c2≥2ac,
所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),即ac的最大值4,
所以△ABC面積S即面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),單調(diào)遞增,,若對(duì)任意,存在,使得成立,則稱是在上的“追逐函數(shù)”.若,則下列四個(gè)命題:①是在上的“追逐函數(shù)”;②若是在上的“追逐函數(shù)”,則;③是在上的“追逐函數(shù)”;④當(dāng)時(shí),存在,使得是在上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是年我國(guó)就業(yè)人口及勞動(dòng)年齡人口(勞動(dòng)年齡人口包含就業(yè)人口)統(tǒng)計(jì)表:
時(shí)間(年) | |||||||
就業(yè)人口(萬(wàn)人) | |||||||
勞動(dòng)年齡人口(萬(wàn)人) |
則由表可知( )
A.年我國(guó)就業(yè)人口逐年減少
B.年我國(guó)勞動(dòng)年齡人口逐年增加
C.年這年我國(guó)就業(yè)人口數(shù)量的中位數(shù)為
D.年我國(guó)勞動(dòng)年齡人口中就業(yè)人口所占比重逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形.
(1)證明:A1C1平面ACD1;
(2)求異面直線CD與AD1所成角的大。
(3)已知三棱錐D1﹣ACD的體積為,求AA1的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 6 | ||
不獲獎(jiǎng) | |||
合計(jì) | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)ax﹣lnx(a∈R).
(1)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過(guò)點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以OD為直徑的圓與點(diǎn)M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】九章算術(shù)中有一題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬,”馬主曰:“我馬食半!,今欲衰償之,問各出幾何?其意:今有牛、馬、羊吃了別人的禾苗,苗主人要求賠償五斗粟,羊主人說(shuō):“我羊所吃的禾苗只有馬的一半”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半”打算按此比例償還,問羊的主人應(yīng)賠償______斗粟,在這個(gè)問題中牛主人比羊主人多賠償______斗粟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),其中.
(1)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
(2)若函數(shù)的兩個(gè)極值點(diǎn)為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com