(不等式選講)若關(guān)于x的不等式|a-1|≥(|2x+1|+|2x-3|)的解集非空,則實(shí)數(shù)a的取值范圍是
(-∞,-3]∪[5,+∞)
(-∞,-3]∪[5,+∞)
分析:把不等式轉(zhuǎn)化為最值,求出a的范圍即可.
解答:解:關(guān)于x的不等式|a-1|≥|2x+1|+|2x-3|的解集非空等價(jià)于|a-1|≥(|2x+1|+|2x-3|)min=4,
所以a-1≥4或a-1≤-4,所以實(shí)數(shù)a的取值范圍是(-∞,-3]∪[5,+∞).
故答案為:(-∞,-3]∪[5,+∞).
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-5:不等式選講)
若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講:
若關(guān)于x的方程x2-4x+|a-3|=0有實(shí)根
(Ⅰ)求實(shí)數(shù)a的取值集合A
(Ⅱ)若對(duì)于?a∈A,不等式t2-2at+12<0恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西安模擬)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(坐標(biāo)系與參數(shù)方程)直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長(zhǎng)為
2
3
2
3

B.(不等式選講)若關(guān)于x不等式|x-1|+|x-m|<2m的解集為∅,則實(shí)數(shù)m的取值范圍為
m≤
1
3
m≤
1
3

C.(幾何證明選講)若Rt△ABC的內(nèi)切圓與斜邊AB相切于D,且AD=1,BD=2,則S△ABC=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•渭南三模)選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A、(不等式選講)若關(guān)于x的方程x2+4x+|a-1|=0有實(shí)根,則實(shí)數(shù)a的取值范圍為
[-3,5]
[-3,5]

B、(幾何證明選講)如圖,AD是⊙O的切線,AC是⊙O的弦,過(guò)C作AD的垂線,垂足為B,CB與⊙O相交于點(diǎn)E,AE平分∠CAB,且AE=2,則AC=
2
3
2
3
 
C、(坐標(biāo)系與參數(shù)方程)已知直線
x=1-2t
y=
3
+t.
(t為參數(shù))與圓ρ=4cos(θ-
π
3
)
相交于A、B兩點(diǎn),則|AB|=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案