設(shè)α、β為鈍角,且sinα=,cosβ=,則α+β的值為(    )

A.            B.          C.         D.

解析:由題意知cosα=,sinβ=,

∴cos(α+β)=×()-×=.

<α<π,<β<π,∴π<α+β<2π.

∴α+β=.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是△ABC的面積,A、B、C的對邊分別為a、b、c,且2SsinA<(
BA
BC
)
sinB,則( 。
A、△ABC是鈍角三角形
B、△ABC是銳角三角形
C、△ABC可能為鈍角三角形,也可能為銳角三角形
D、無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于兩點(diǎn)P1,P2,已知|P1P2|=8.
(1)過點(diǎn)M(3,0)且斜率為a的直線與曲線C相交于A、B兩點(diǎn),求△FAB的面積S(a)及其值域.
(2)設(shè)m>0,過點(diǎn)N(m,0)作直線與曲線C相交于A、B兩點(diǎn),若∠AFB恒為鈍角,試求出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點(diǎn),已知|P1P2|=8.
(1)求拋物線C的方程;
(2)過點(diǎn)M(3,0)作方向向量為
d
=(1,a)
的直線與曲線C相交于A,B兩點(diǎn),求△FAB的面積S(a)并求其值域;
(3)設(shè)m>0,過點(diǎn)M(m,0)作直線與曲線C相交于A,B兩點(diǎn),問是否存在實(shí)數(shù)m使∠AFB為鈍角?若存在,請求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于兩點(diǎn)P1,P2,已知|P1P2|=8.
(1)過點(diǎn)M(3,0)且斜率為a的直線與曲線C相交于A、B兩點(diǎn),求△FAB的面積S(a)及其值域.
(2)設(shè)m>0,過點(diǎn)N(m,0)作直線與曲線C相交于A、B兩點(diǎn),若∠AFB恒為鈍角,試求出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省臺(tái)州中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)S是△ABC的面積,A、B、C的對邊分別為a、b、c,且2SsinA<sinB,則( )
A.△ABC是鈍角三角形
B.△ABC是銳角三角形
C.△ABC可能為鈍角三角形,也可能為銳角三角形
D.無法判斷

查看答案和解析>>

同步練習(xí)冊答案