分析 根據(jù)題意,有g(shù)(x)+h(x)=2x①,結(jié)合函數(shù)奇偶性的性質(zhì)可得f(-x)=-g(x)+h(x)=2-x②,聯(lián)立①②解可得h(x)與g(x)的解析式,進而可以將g(x)>h(0)轉(zhuǎn)化為$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,變形可得2x-2-x>2,解可得x的取值范圍,即可得答案.
解答 解:根據(jù)題意,f(x)=2x且f(x)=g(x)+h(x),即g(x)+h(x)=2x,①
則有f(-x)=g(-x)+h(-x)=2-x,
又由g(x)為奇函數(shù),h(x)為偶函數(shù),則f(-x)=-g(x)+h(x)=2-x,②
聯(lián)立①②,解可得h(x)=$\frac{1}{2}$(2x+2-x),g(x)=$\frac{1}{2}$(2x-2-x),
不等式g(x)>h(0)即$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,
即2x-2-x>2,
解可得2x>1+$\sqrt{2}$,
則有x>log2(1+$\sqrt{2}$),
即不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞);
故答案為:(1+$\sqrt{2}$,+∞).
點評 本題考查函數(shù)奇偶性的應用,關(guān)鍵求出函數(shù)g(x)與h(x)的解析式.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com