3.已知函數(shù)f(x)=2x且f(x)=g(x)+h(x),其中g(shù)(x)為奇函數(shù),h(x)為偶函數(shù),則不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞).

分析 根據(jù)題意,有g(shù)(x)+h(x)=2x①,結(jié)合函數(shù)奇偶性的性質(zhì)可得f(-x)=-g(x)+h(x)=2-x②,聯(lián)立①②解可得h(x)與g(x)的解析式,進而可以將g(x)>h(0)轉(zhuǎn)化為$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,變形可得2x-2-x>2,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,f(x)=2x且f(x)=g(x)+h(x),即g(x)+h(x)=2x,①
則有f(-x)=g(-x)+h(-x)=2-x,
又由g(x)為奇函數(shù),h(x)為偶函數(shù),則f(-x)=-g(x)+h(x)=2-x,②
聯(lián)立①②,解可得h(x)=$\frac{1}{2}$(2x+2-x),g(x)=$\frac{1}{2}$(2x-2-x),
不等式g(x)>h(0)即$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,
即2x-2-x>2,
解可得2x>1+$\sqrt{2}$,
則有x>log2(1+$\sqrt{2}$),
即不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞);
故答案為:(1+$\sqrt{2}$,+∞).

點評 本題考查函數(shù)奇偶性的應用,關(guān)鍵求出函數(shù)g(x)與h(x)的解析式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案