已知頂點在原點,焦點在軸上的拋物線被直線截得的弦長為,求拋物線的方程.
.

試題分析:本題考查拋物線的標準方程以及拋物線與直線相交的弦長問題,考查基本的計算能力.先設(shè)出拋物線方程,由拋物線與直線相交列出方程組,消參得關(guān)于x的方程,得到兩根之和、兩根之積,將弦長進行轉(zhuǎn)化,把兩根之和、兩根之積代入,解方程求出參數(shù)P,從而得拋物線方程.
試題解析:設(shè)拋物線的方程為,則

,
或6, .
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,,直線AG,BG相交于點G,且它們的斜率之積是
(Ⅰ)求點G的軌跡的方程;
(Ⅱ)圓上有一個動點P,且P在x軸的上方,點,直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.

(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,為坐標原點,如果一個橢圓經(jīng)過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別是,離心率,為橢圓上任一點,且的最大面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線交橢圓兩點,且以為直徑的圓恒過原點,若實數(shù)滿足條件,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的兩條漸近線與拋物線的準線分別交于兩點,為坐標原點.若雙曲線的離心率為2,的面積為,則_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,準線為,經(jīng)過且斜率為的直線與拋物線在軸上方的部分相交于點,垂足為,則的面積是    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知動點到點的距離等于它到直線的距離,則點的軌跡方程是      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若實數(shù)滿足(其中是自然底數(shù)),則的最小值為_____________.

查看答案和解析>>

同步練習冊答案