設(shè)圓過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在此雙曲線上,則圓心到雙曲線中心的距離為( 。                                                                                                                           
A. 4B.C.D.5
B
由題意可知圓過雙曲線同一側(cè)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)(否則圓心不能在雙曲線上),不妨設(shè)過,∴圓心在直線上,代入雙曲線的方程解得,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,),半徑為1,點(diǎn)Q在圓C上運(yùn)動(dòng),O為極點(diǎn)。
(1)求圓C的極坐標(biāo)方程;
(2)若點(diǎn)在直線OQ上運(yùn)動(dòng),且滿足,求動(dòng)點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的準(zhǔn)線的方程為,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線的距離都與到定點(diǎn)的距離相等,圓是以為圓心,同時(shí)與直線相切的圓,
(Ⅰ)求定點(diǎn)的坐標(biāo);
(Ⅱ)是否存在一條直線同時(shí)滿足下列條件:
分別與直線交于兩點(diǎn),且中點(diǎn)為
被圓截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中,頂點(diǎn),,的平分線的方程是.求頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)A(1,2,-3)關(guān)于x軸的對(duì)稱點(diǎn)B的坐標(biāo)為        , 點(diǎn)A關(guān)于坐標(biāo)平面xOy的對(duì)稱點(diǎn)C的坐標(biāo)為        , B,C兩點(diǎn)間的距離為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題



查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為B(0,4),離心率, 直線交橢圓于M,N兩點(diǎn).
(1)若直線的方程為y=x-4,求弦MN的長(zhǎng):
(2)如果BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,由x軸的正半軸、y軸的正半軸、曲線以及該曲線在處的切線所圍成圖形的面積是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓 為焦點(diǎn),離心率。
(I)當(dāng)時(shí),①求橢圓的標(biāo)準(zhǔn)方程;②若直線與拋物線交于兩點(diǎn),且線段 恰好被點(diǎn)平分,設(shè)直線與橢圓交于兩點(diǎn),求線段的長(zhǎng);
(II)(僅理科做)設(shè)拋物線與橢圓的一個(gè)交點(diǎn)為,是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù)的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案