【題目】如圖,在直三棱柱中,,,,,分別是,的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
(1)由直三棱柱側(cè)棱與底面垂直可得,結(jié)合已知,得到平面,從而得到平面平面;
(2)取的中點(diǎn),連接,.由三角形中位線定理可得,且,得到四邊形為平行四邊形,進(jìn)一步得到.由線面平行的判定得到平面;
(3)由已知求解直角三角形得到,求得底面積,代入三棱錐體積公式求得三棱錐的體積.
解析:(1)證明:在三棱柱中,
底面,所以.
又因?yàn)?/span>,,
所以平面,
又平面,
所以平面平面
(2)證明:取的中點(diǎn),連接,.
因?yàn)?/span>,,分別是,,的中點(diǎn),
所以,且,.
因?yàn)?/span>,且,所以,且,
所以四邊形為平行四邊形,所以.
又因?yàn)?/span>平面,平面,所以平面.
(3)因?yàn)?/span>,,,所以.
所以三棱錐的體積
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,且過(guò)點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l經(jīng)過(guò)點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N試問(wèn):在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓O上運(yùn)動(dòng),若△PAB面積的最大值為,橢圓O的離心率為.
(1)求橢圓O的標(biāo)準(zhǔn)方程;
(2)過(guò)B點(diǎn)作圓E:的兩條切線,分別與橢圓O交于兩點(diǎn)C,D(異于點(diǎn)B),當(dāng)r變化時(shí),直線CD是否恒過(guò)某定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:,經(jīng)統(tǒng)計(jì),其高度均在區(qū)間,內(nèi),將其按,,,,,,,,,,,分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中的值,并估計(jì)這批樹苗的平均高度(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)已知所抽取的這120棵樹苗來(lái)自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗(yàn)區(qū) | 試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有5名男生和3名女生站成一排照相,
(1)3名女生站在一起,有多少種不同的站法?
(2)3名女生次序一定,但不一定相鄰,有多少種不同的站法?
(3)3名女生不站在排頭和排尾,也互不相鄰,有多少種不同的站法?
(4)3名女生中,A,B要相鄰,A,C不相鄰,有多少種不同的站法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與x軸負(fù)半軸交于,離心率.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年全國(guó)“兩會(huì)”,即中華人民共和國(guó)第十三屆全國(guó)人大二次會(huì)議和中國(guó)人民政治協(xié)商會(huì)議第十三屆全國(guó)委員會(huì)第二次會(huì)議,分別于2019年3月5日和3月3日在北京召開(kāi).為了了解哪些人更關(guān)注“兩會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會(huì)”,“中老年人”中關(guān)注“兩會(huì)”和不關(guān)注“兩會(huì)”的人數(shù)之比是2:1.
(Ⅰ)求圖中的值;
(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機(jī)抽取8名代表,從8人中任選2人,求2人中至少有1個(gè)是“中老年人”的概率是多少?
(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會(huì)”?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com